Exportación Completada — 

Hierarchical bayesian model accounts for heterogeneity in oncologists' stated preference on various breast cancer treatments

Descripción del Articulo

Objectives: Traditional stated-preference models with fixed effects assume that individuals behave similarly. However, empirical evidence has shown that individuals’ preferences are often diverse. Hierarchical Bayesian models that include random effects provide individual-specific utilities to accou...

Descripción completa

Detalles Bibliográficos
Autores: Shi, A., Talledo Flores, Oscar Hernán
Formato: artículo
Fecha de Publicación:2017
Institución:Universidad San Ignacio de Loyola
Repositorio:USIL-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.usil.edu.pe:20.500.14005/3966
Enlace del recurso:https://hdl.handle.net/20.500.14005/3966
https://doi.org/10.1016/j.jval.2017.08.2122
Nivel de acceso:acceso embargado
Materia:Oncología Médica
Cáncer
Statistical inference
Descripción
Sumario:Objectives: Traditional stated-preference models with fixed effects assume that individuals behave similarly. However, empirical evidence has shown that individuals’ preferences are often diverse. Hierarchical Bayesian models that include random effects provide individual-specific utilities to account for heterogeneity. This research studies oncologists’ choices about various pharmaceutical therapies for patients who have metastatic breast cancer. Methods: In this discrete choice experiment conducted in Lima, Peru, each of 113 oncologists was presented with 11 choice tasks (each consisting of four scenarios of therapies plus the NONE option) and asked to pick the best choice. The attributes included Treatment Scheme, Patient Recovery Status, Treatment Length, Cost, and Risk Factors. Hierarchical Bayesian methods were used in this multinomial logit conjoint analysis to account for heterogeneity in preferences.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).