Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis

Descripción del Articulo

Stuttering is a common speech disorder that can impact in the quality of life of adults who stutter (AWS). In order to manage this condition, it is necessary to measure and assess the stuttering severity before, during and after any therapeutic process. To evaluate it, monitoring biosignals-included...

Descripción completa

Detalles Bibliográficos
Autores: Villegas, Bruno, Flores, Kevin M., Pacheco-Barrios, Kevin, Elias, Dante
Formato: artículo
Fecha de Publicación:2019
Institución:Universidad San Ignacio de Loyola
Repositorio:USIL-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.usil.edu.pe:usil/9104
Enlace del recurso:https://repositorio.usil.edu.pe/handle/usil/9104
http://dx.doi.org/10.1109/ISMICT.2019.8743844
Nivel de acceso:acceso embargado
Materia:Bioinformatics
Speech recognition
Diagnosis
Respirators
id USIL_0009ee54279b040673d2ffa3b6a5f7ca
oai_identifier_str oai:repositorio.usil.edu.pe:usil/9104
network_acronym_str USIL
network_name_str USIL-Institucional
repository_id_str 3128
spelling Villegas, BrunoFlores, Kevin M.Pacheco-Barrios, KevinElias, Dante2019-08-12T20:43:31Z2019-08-12T20:43:31Z2019-05Stuttering is a common speech disorder that can impact in the quality of life of adults who stutter (AWS). In order to manage this condition, it is necessary to measure and assess the stuttering severity before, during and after any therapeutic process. To evaluate it, monitoring biosignals-included the respiratory patterns-could be an option; however is not clear the difference between speech conditions. Therefore, we compare the respiratory patterns and biosignals during speech of adults who stutter (AWS) and who not stutter (AWNS) to describe the differences and patterns of blocks and fluent speech. Sixty-six participants (AWS=33, AWNS=33) were asked to perform a reading task. We record the respiratory patterns and biosignals (pulse, saturation and galvanic response) using standardized system. We assess the differences among three conditions: fluent speech from ANWS, blocks from AWS and fluent speech from AWS. A higher number of expiratory volume peaks and amplitudes were found during the blocks segments compared to the fluent speech segments. These different patterns could be used to differentiate speech conditions using a recognition algorithm to automate evaluations in a real-Time environment for stuttering diagnosis or follow-up.Revisado por paresapplication/pdf10.1109/ISMICT.2019.8743844978-172812342-42326-828XInternational Symposium on Medical Information and Communication Technology, ISMICThttps://repositorio.usil.edu.pe/handle/usil/9104http://dx.doi.org/10.1109/ISMICT.2019.8743844spaIEEE Computer SocietyInternational Symposium on Medical Information and Communication Technology, ISMICTinfo:eu-repo/semantics/embargoedAccessUniversidad San Ignacio de LoyolaRepositorio Institucional - USILreponame:USIL-Institucionalinstname:Universidad San Ignacio de Loyolainstacron:USILBioinformaticsSpeech recognitionDiagnosisRespiratorsMonitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysisinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-8403https://repositorio.usil.edu.pe/bitstreams/a1dbc456-cf0f-4935-bf79-7b352e5b6aa4/downloadf9976ed1e62b1fd0bb0352d58dba7be2MD52usil/9104oai:repositorio.usil.edu.pe:usil/91042022-01-31 16:53:32.227https://repositorio.usil.edu.peRepositorio institucional de la Universidad San Ignacio de Loyolabdigital@metabiblioteca.comPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgZGUgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMtbmQvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyIC8+RXN0ZSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLyI+bGljZW5jaWEgZGUgQ3JlYXRpdmUgQ29tbW9ucyBSZWNvbm9jaW1pZW50by1Ob0NvbWVyY2lhbC1TaW5PYnJhRGVyaXZhZGEgNC4wIEludGVybmFjaW9uYWw8L2E+Lg==
dc.title.es_ES.fl_str_mv Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
title Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
spellingShingle Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
Villegas, Bruno
Bioinformatics
Speech recognition
Diagnosis
Respirators
title_short Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
title_full Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
title_fullStr Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
title_full_unstemmed Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
title_sort Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
author Villegas, Bruno
author_facet Villegas, Bruno
Flores, Kevin M.
Pacheco-Barrios, Kevin
Elias, Dante
author_role author
author2 Flores, Kevin M.
Pacheco-Barrios, Kevin
Elias, Dante
author2_role author
author
author
dc.contributor.author.fl_str_mv Villegas, Bruno
Flores, Kevin M.
Pacheco-Barrios, Kevin
Elias, Dante
dc.subject.es_ES.fl_str_mv Bioinformatics
Speech recognition
Diagnosis
Respirators
topic Bioinformatics
Speech recognition
Diagnosis
Respirators
description Stuttering is a common speech disorder that can impact in the quality of life of adults who stutter (AWS). In order to manage this condition, it is necessary to measure and assess the stuttering severity before, during and after any therapeutic process. To evaluate it, monitoring biosignals-included the respiratory patterns-could be an option; however is not clear the difference between speech conditions. Therefore, we compare the respiratory patterns and biosignals during speech of adults who stutter (AWS) and who not stutter (AWNS) to describe the differences and patterns of blocks and fluent speech. Sixty-six participants (AWS=33, AWNS=33) were asked to perform a reading task. We record the respiratory patterns and biosignals (pulse, saturation and galvanic response) using standardized system. We assess the differences among three conditions: fluent speech from ANWS, blocks from AWS and fluent speech from AWS. A higher number of expiratory volume peaks and amplitudes were found during the blocks segments compared to the fluent speech segments. These different patterns could be used to differentiate speech conditions using a recognition algorithm to automate evaluations in a real-Time environment for stuttering diagnosis or follow-up.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-08-12T20:43:31Z
dc.date.available.none.fl_str_mv 2019-08-12T20:43:31Z
dc.date.issued.fl_str_mv 2019-05
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/ISMICT.2019.8743844
dc.identifier.isbn.none.fl_str_mv 978-172812342-4
dc.identifier.issn.none.fl_str_mv 2326-828X
dc.identifier.journal.es_ES.fl_str_mv International Symposium on Medical Information and Communication Technology, ISMICT
dc.identifier.uri.none.fl_str_mv https://repositorio.usil.edu.pe/handle/usil/9104
http://dx.doi.org/10.1109/ISMICT.2019.8743844
identifier_str_mv 10.1109/ISMICT.2019.8743844
978-172812342-4
2326-828X
International Symposium on Medical Information and Communication Technology, ISMICT
url https://repositorio.usil.edu.pe/handle/usil/9104
http://dx.doi.org/10.1109/ISMICT.2019.8743844
dc.language.iso.es_ES.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv International Symposium on Medical Information and Communication Technology, ISMICT
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv IEEE Computer Society
dc.source.es_ES.fl_str_mv Universidad San Ignacio de Loyola
Repositorio Institucional - USIL
dc.source.none.fl_str_mv reponame:USIL-Institucional
instname:Universidad San Ignacio de Loyola
instacron:USIL
instname_str Universidad San Ignacio de Loyola
instacron_str USIL
institution USIL
reponame_str USIL-Institucional
collection USIL-Institucional
bitstream.url.fl_str_mv https://repositorio.usil.edu.pe/bitstreams/a1dbc456-cf0f-4935-bf79-7b352e5b6aa4/download
bitstream.checksum.fl_str_mv f9976ed1e62b1fd0bb0352d58dba7be2
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio institucional de la Universidad San Ignacio de Loyola
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1790534298418282496
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).