Monitoring of respiratory patterns and biosignals during speech from adults who stutter and do not stutter: A comparative analysis
Descripción del Articulo
Stuttering is a common speech disorder that can impact in the quality of life of adults who stutter (AWS). In order to manage this condition, it is necessary to measure and assess the stuttering severity before, during and after any therapeutic process. To evaluate it, monitoring biosignals-included...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Universidad San Ignacio de Loyola |
Repositorio: | USIL-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.usil.edu.pe:usil/9104 |
Enlace del recurso: | https://repositorio.usil.edu.pe/handle/usil/9104 http://dx.doi.org/10.1109/ISMICT.2019.8743844 |
Nivel de acceso: | acceso embargado |
Materia: | Bioinformatics Speech recognition Diagnosis Respirators |
Sumario: | Stuttering is a common speech disorder that can impact in the quality of life of adults who stutter (AWS). In order to manage this condition, it is necessary to measure and assess the stuttering severity before, during and after any therapeutic process. To evaluate it, monitoring biosignals-included the respiratory patterns-could be an option; however is not clear the difference between speech conditions. Therefore, we compare the respiratory patterns and biosignals during speech of adults who stutter (AWS) and who not stutter (AWNS) to describe the differences and patterns of blocks and fluent speech. Sixty-six participants (AWS=33, AWNS=33) were asked to perform a reading task. We record the respiratory patterns and biosignals (pulse, saturation and galvanic response) using standardized system. We assess the differences among three conditions: fluent speech from ANWS, blocks from AWS and fluent speech from AWS. A higher number of expiratory volume peaks and amplitudes were found during the blocks segments compared to the fluent speech segments. These different patterns could be used to differentiate speech conditions using a recognition algorithm to automate evaluations in a real-Time environment for stuttering diagnosis or follow-up. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).