Sistema de reconocimiento de texto mecanografiado mediante redes neuronales para la gestión de boletas de pago en la Ugel Ferreñafe
Descripción del Articulo
En este proyecto, se llevó a cabo un estudio con el objetivo de desarrollar un sistema de reconocimiento óptico de caracteres (OCR) diseñado para identificar y almacenar la información de las boletas de pago de docentes en la UGEL Ferreñafe. Esto se debió a la necesidad de agilizar la búsqueda de bo...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad Católica Santo Toribio de Mogrovejo |
Repositorio: | USAT-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:tesis.usat.edu.pe:20.500.12423/7422 |
Enlace del recurso: | http://hdl.handle.net/20.500.12423/7422 |
Nivel de acceso: | acceso abierto |
Materia: | Reconocimiento Óptico de Caracteres (OCR) Automatización de Procesos Tecnología Educativa Optical Character Recognition (OCR) Process Automation Educational Technology http://purl.org/pe-repo/ocde/ford#2.02.04 |
Sumario: | En este proyecto, se llevó a cabo un estudio con el objetivo de desarrollar un sistema de reconocimiento óptico de caracteres (OCR) diseñado para identificar y almacenar la información de las boletas de pago de docentes en la UGEL Ferreñafe. Esto se debió a la necesidad de agilizar la búsqueda de boletas en formato físico, un proceso que, en ocasiones, podía llevar semanas y requerir la contratación de personal adicional. Esta problemática impulsó la búsqueda de una solución eficaz y rentable. Siguiendo las metodologías SCRUM y CRISP-DM, se optó por utilizar Redes Neuronales (RN) como la técnica principal. Esta elección se basó en investigaciones previas y tendencias identificadas en Google Trends. El objetivo fundamental era alcanzar un porcentaje de error bajo en la tasa de caracteres reconocidos, y se logró un hito significativo del 1.8%, a pesar de la degradación de la tinta en muchas boletas debido al paso del tiempo. Para evaluar la usabilidad del sistema, se aplicó la escala SUS (System Usability Scale), y el sistema obtuvo una puntuación de 80, superando las expectativas iniciales. Esto resalta la alta usabilidad y satisfacción de los usuarios finales con la aplicación desarrollada. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).