Sistema de reconocimiento de texto mecanografiado mediante redes neuronales para la gestión de boletas de pago en la Ugel Ferreñafe

Descripción del Articulo

En este proyecto, se llevó a cabo un estudio con el objetivo de desarrollar un sistema de reconocimiento óptico de caracteres (OCR) diseñado para identificar y almacenar la información de las boletas de pago de docentes en la UGEL Ferreñafe. Esto se debió a la necesidad de agilizar la búsqueda de bo...

Descripción completa

Detalles Bibliográficos
Autor: Bonilla Vilchez, Jonathan Alonso
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Católica Santo Toribio de Mogrovejo
Repositorio:USAT-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.usat.edu.pe:20.500.12423/7422
Enlace del recurso:http://hdl.handle.net/20.500.12423/7422
Nivel de acceso:acceso abierto
Materia:Reconocimiento Óptico de Caracteres (OCR)
Automatización de Procesos
Tecnología Educativa
Optical Character Recognition (OCR)
Process Automation
Educational Technology
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:En este proyecto, se llevó a cabo un estudio con el objetivo de desarrollar un sistema de reconocimiento óptico de caracteres (OCR) diseñado para identificar y almacenar la información de las boletas de pago de docentes en la UGEL Ferreñafe. Esto se debió a la necesidad de agilizar la búsqueda de boletas en formato físico, un proceso que, en ocasiones, podía llevar semanas y requerir la contratación de personal adicional. Esta problemática impulsó la búsqueda de una solución eficaz y rentable. Siguiendo las metodologías SCRUM y CRISP-DM, se optó por utilizar Redes Neuronales (RN) como la técnica principal. Esta elección se basó en investigaciones previas y tendencias identificadas en Google Trends. El objetivo fundamental era alcanzar un porcentaje de error bajo en la tasa de caracteres reconocidos, y se logró un hito significativo del 1.8%, a pesar de la degradación de la tinta en muchas boletas debido al paso del tiempo. Para evaluar la usabilidad del sistema, se aplicó la escala SUS (System Usability Scale), y el sistema obtuvo una puntuación de 80, superando las expectativas iniciales. Esto resalta la alta usabilidad y satisfacción de los usuarios finales con la aplicación desarrollada.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).