Computer vision for Pokémon Battles: A YOLO and Tesseract-Based System for Automated Recognition and Gameplay Analysis
Descripción del Articulo
Pokémon Double Battles present a complex decision-making environment that has traditionally relied on manual data analysis. This paper introduces an automated system leveraging computer vision and deep learning to extract structured gameplay data from battle footage. Our approach integrates You Only...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad de Lima |
| Repositorio: | Revistas - Universidad de Lima |
| Lenguaje: | inglés |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/8270 |
| Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/8270 |
| Nivel de acceso: | acceso abierto |
| Materia: | Computer Vision Pokémon YOLO Tesseract OCR Visión por computadora |
| Sumario: | Pokémon Double Battles present a complex decision-making environment that has traditionally relied on manual data analysis. This paper introduces an automated system leveraging computer vision and deep learning to extract structured gameplay data from battle footage. Our approach integrates You Only Look Once (YOLO) for Pokémon sprite recognition along with Tesseract-based optical character recognition (OCR) for extracting move and status text. The study introduces a custom-built image dataset generated through the augmentation of publicly available Pokémon sprites, which is then used to train a YOLO model for sprite recognition. The system was tested across multiple controlled and real-world gameplay scenarios, achieving high accuracy in Pokémon recognition and action tracking. Additionally, a JSON-based gameplay notation system is proposed to structure battle sequences, thus improving analysis and strategic review. The results demonstrate the feasibility of AI-driven gameplay analysis, with potential applications for competitive players, game analysts, and developers. Given its exploratory nature, this study focuses on technical feasibility rather than statistical generalisation. Future work includes expanding the dataset, improving OCR performance, and enabling real-time processing to support broader practical use. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).