Exportación Completada — 

Existencia y unicidad de la solución débil de un problema de contacto tipo p(x)-KIRCHHOFF

Descripción del Articulo

Estudiamos un problema de contacto por fricci´on del tipo p(x) - Kirchhoff. Mediante una t´ecnica de multiplicador abstracto de Lagrange y el teorema del punto fijo de Schauder (TPF Schauder) establecemos la existencia de soluciones d´ebiles. En este trabajo de tesis consideramos Ω ⊆ R 2 un dominio...

Descripción completa

Detalles Bibliográficos
Autor: Barahona Martinez, Willy David
Formato: tesis doctoral
Fecha de Publicación:2024
Institución:Universidad Nacional del Santa
Repositorio:UNS - Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.uns.edu.pe:20.500.14278/4772
Enlace del recurso:https://hdl.handle.net/20.500.14278/4772
Nivel de acceso:acceso abierto
Materia:Problema de contacto por fricción
Problema p(x) - ) - Kirchhoff
Teorema del punto fijo de Schauder
Multiplicador abstracto de Lagrange
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:Estudiamos un problema de contacto por fricci´on del tipo p(x) - Kirchhoff. Mediante una t´ecnica de multiplicador abstracto de Lagrange y el teorema del punto fijo de Schauder (TPF Schauder) establecemos la existencia de soluciones d´ebiles. En este trabajo de tesis consideramos Ω ⊆ R 2 un dominio acotado con frontera Γ = Γ1 ∪ Γ2 ∪ Γ3 suficientemente regular tal que med(Γi) > 0, i = 1, 2, 3; ν es el vector normal exterior donde ∂u ∂ν = ∇u.ν, M una funci´on localmente Lipschitz continua y las funciones f1, f2 y g definidas convenientemente para objeto del estudio, asi como el funcional L(u) = Z Ω 1 p(x) ∇u p(x) dx (I) −M L(u) ∆p(x)u = f1(x, u), en Ω. u = 0, sobre Γ1. M L(u) ∇u p(x)−2 ∂u ∂ν = f2(x), sobre Γ2. M L(u) ∇u p(x)−2 ∂u ∂ν ≤ g(x), sobre Γ3. M L(u) ∇u p(x)−2 ∂u ∂ν = −g(x) u(x) |u(x)| , si u ̸= 0 sobre Γ3. para 2 ≤ p(x) ≤
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).