Modelo de aprendizaje para sistemas de recomendación, caso: Curso Programación Web

Descripción del Articulo

Los sistemas de recomendación en la actualidad nos ayudan a obtener resultados de búsqueda cercano o adaptados a nuestras necesidades, en los últimos años este enfoque ha ido cambiando y se ha centrado en los sistemas e-Learning y dentro de lo que son los sistemas de gestión de aprendizaje, que son...

Descripción completa

Detalles Bibliográficos
Autor: Vera Sancho, Julio Augusto
Formato: tesis de maestría
Fecha de Publicación:2016
Institución:Universidad Nacional de San Agustín
Repositorio:UNSA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unsa.edu.pe:UNSA/6126
Enlace del recurso:http://repositorio.unsa.edu.pe/handle/UNSA/6126
Nivel de acceso:acceso abierto
Materia:Sistemas de recomendación
E-learning
Maquinas de aprendizaje
Redes bayesianas
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Los sistemas de recomendación en la actualidad nos ayudan a obtener resultados de búsqueda cercano o adaptados a nuestras necesidades, en los últimos años este enfoque ha ido cambiando y se ha centrado en los sistemas e-Learning y dentro de lo que son los sistemas de gestión de aprendizaje, que son tecnologías educativas muy importante para el desarrollo académico de las estudiantes, dentro de los sistemas de recomendación tradicionales se hace un matching entre lo que es las entradas del estudiante, que por lo general son las tareas y las notas que se le da al estudiante por su desenvolvimiento ante una tarea, que es proporcionada por un profesor o algún sistema. Este trabajo propone un modelo de recomendación de contenidos educativos basado en el contexto de un usuario, el cual usa un modelo de contexto que incorpora el rol, las tareas, ejercicios de programación y su aplicación al problema de recomendación. Las recomendaciones se hacen sobre la base de la estimación de la diferencia que existe entre el nivel de conocimiento actual de un usuario frente a las habilidades que requiere en su contexto que se encuentra. En el trabajo se usa una técnica de razonamiento probabilístico para las recomendaciones, para tener en cuenta las especificaciones inexactas de las competencias de los usuarios y los requerimientos en su contexto. Los experimentos desarrollados en el contexto del estudiante, muestran que, usando un modelo de razonamiento probabilístico ayuda a obtener mejores recomendaciones de contenidos educativos, según a las competencias faltantes de un estudiante respecto a un tema que necesita aprender, lo cual se busca hacer una estandarización para sistemas de recomendación.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).