Método del punto proximal para problemas no convexos con aplicación a funciones cuasi-convexas

Descripción del Articulo

Estudia las propiedades de las funciones cuasiconvexas y demuestra que el método del punto proximal, aplicado a funciones definidas como el supremo de una funciones cuasiconvexas y diferenciables, está bien definido y la sucesión generada converge a un punto estacionario. La tesis se divide de la si...

Descripción completa

Detalles Bibliográficos
Autor: Lazaro Llerena, Leonardo David
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/21118
Enlace del recurso:https://hdl.handle.net/20.500.12672/21118
Nivel de acceso:acceso abierto
Materia:Conjuntos convexos
Funciones convexas
Optimización matemática
https://purl.org/pe-repo/ocde/ford#1.01.01
Descripción
Sumario:Estudia las propiedades de las funciones cuasiconvexas y demuestra que el método del punto proximal, aplicado a funciones definidas como el supremo de una funciones cuasiconvexas y diferenciables, está bien definido y la sucesión generada converge a un punto estacionario. La tesis se divide de la siguiente manera. En el Capítulo 1, se expone una breve introducción a la optimización y algunos resultados sobre funciones convexas. En el Capitulo 2, se estudia las funciones cuasiconvexas y sus propiedades. Finalmente, en el Capítulo 3, se define formalmente las funciones a la que se explica el método del punto proximal, enuncia y demuestra el teorema de existencia y convergencia del método, que es el principal resultado de la investigación.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).