Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas

Descripción del Articulo

Adsorbentes magnéticos de nanopartículas de óxidos de hierro como magnetita (Fe3O4) y maghemita (-Fe2O3) fueron sintetizados y usados en la remoción de arsénico As (V) en agua. Estas nanopartículas de óxidos de hierro son materiales excepcionales debido a su buena capacidad de adsorción y a sus pro...

Descripción completa

Detalles Bibliográficos
Autor: Mejía Santillán, Mirian Esther
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Universidad Nacional Mayor de San Marcos
Repositorio:UNMSM-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.unmsm.edu.pe:20.500.12672/10122
Enlace del recurso:https://hdl.handle.net/20.500.12672/10122
Nivel de acceso:acceso abierto
Materia:Nanoestructuras
Nanopartículas - Propiedades magnéticas
Metales pesados - Absorción y adsorción
Arsénico - Análisis
Descontaminación
Contaminantes orgánicos en el agua
Aguas subterráneas - Contaminación
https://purl.org/pe-repo/ocde/ford#1.03.03
id UNMS_d8c31cd58a30dae79de4d432dc394c4b
oai_identifier_str oai:cybertesis.unmsm.edu.pe:20.500.12672/10122
network_acronym_str UNMS
network_name_str UNMSM-Tesis
repository_id_str 410
dc.title.none.fl_str_mv Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
title Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
spellingShingle Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
Mejía Santillán, Mirian Esther
Nanoestructuras
Nanopartículas - Propiedades magnéticas
Metales pesados - Absorción y adsorción
Arsénico - Análisis
Descontaminación
Contaminantes orgánicos en el agua
Aguas subterráneas - Contaminación
https://purl.org/pe-repo/ocde/ford#1.03.03
title_short Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
title_full Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
title_fullStr Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
title_full_unstemmed Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
title_sort Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas
author Mejía Santillán, Mirian Esther
author_facet Mejía Santillán, Mirian Esther
author_role author
dc.contributor.advisor.fl_str_mv Bravo Cabrejos, Jorge Aurelio
dc.contributor.author.fl_str_mv Mejía Santillán, Mirian Esther
dc.subject.none.fl_str_mv Nanoestructuras
Nanopartículas - Propiedades magnéticas
Metales pesados - Absorción y adsorción
Arsénico - Análisis
Descontaminación
Contaminantes orgánicos en el agua
Aguas subterráneas - Contaminación
topic Nanoestructuras
Nanopartículas - Propiedades magnéticas
Metales pesados - Absorción y adsorción
Arsénico - Análisis
Descontaminación
Contaminantes orgánicos en el agua
Aguas subterráneas - Contaminación
https://purl.org/pe-repo/ocde/ford#1.03.03
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.03.03
description Adsorbentes magnéticos de nanopartículas de óxidos de hierro como magnetita (Fe3O4) y maghemita (-Fe2O3) fueron sintetizados y usados en la remoción de arsénico As (V) en agua. Estas nanopartículas de óxidos de hierro son materiales excepcionales debido a su buena capacidad de adsorción y a sus propiedades magnéticas. Busca investigar la idoneidad de las nanopartículas de Fe3O4 para la adsorción de As (V) y comparar sus propiedades físicas, potencial y eficiencia con respecto a las nanopartículas de - Fe2O3. Las nanopartículas magnéticas fueron obtenidas a través de métodos químicos en solución acuosa, oxidación parcial activada térmicamente y transformaciones de fase sólida de partículas en suspensión. Las partículas obtenidas fueron caracterizadas por difractometría de rayos X, fluorescencia de rayos X, espectroscopia Mössbauer, microscopia electrónica de barrido y por espectroscopia Raman. También se realizaron medidas magnéticas y medidas de potencial Zeta. Las propiedades morfológicas y físicas de las partículas fueron correlacionadas con sus propiedades de adsorción en agua con respecto al arsénico (V). La capacidad de adsorción de los óxidos de hierro obtenidos incrementa al cambiar la fase cristalina involucrada, e.d., en la transformación de magnetita a maghemita. Para probar la viabilidad de la remoción de arsénico, se utilizó 0,05 g de nanopartículas en 50 mL de solución de arsénico a una concentración de 100 ppb. Las nanopartículas estuvieron en contacto con la solución por 1 min, 5 min, 30 min, 90 min y 300 min. Se encontró que las nanopartículas de maghemita pueden disminuir el contenido de arsénico en el agua de manera eficiente, por debajo del límite establecido por el Organismo Mundial de Salud de 10 ppb. Por lo tanto, estos resultados sugieren que el uso de estas nanopartículas magnéticas podría ser un proceso viable de remoción de arsénico de agua potable. La tecnología de remediación tradicional confía grandemente en la adsorción para la remoción de arsénico del agua usando materiales como óxidos de hierro, alúmina activada, carbón activado, sílice, membranas adsorbentes, etc. Estos métodos pueden ser complejos, costosos, poco eficientes y producir una gran cantidad de desperdicios. Por lo tanto, es necesario desarrollar un método de eliminación de arsénico económicamente factible y altamente eficiente. Debido a su bajo costo y alta afinidad por diferentes especies de arsénico, los óxidos de hierro se han utilizado ampliamente para la eliminación de arsénico con resultados exitosos. Durante las últimas décadas, debido a la emergencia de una nueva generación de tecnología de materiales de alto nivel, el número de investigaciones involucradas envueltas en nanomateriales se ha incrementado exponencialmente. Esto es debido a sus nobles propiedades físicoquímicas, las cuales difieren entre sí según sea como átomos aislados o como fase bulk. Las nanopartículas magnéticas que han estado bajo investigaciones por décadas y que son de gran interés científico en un amplio rango de disciplinas son la magnetita (Fe3O4) y la maghemita (-Fe2O3), las cuales son consideradas como importantes minerales para muchos campos de estudio. Su uso se ha ampliado en gran medida en procesos industriales como fluidos magnéticos, catálisis, biomedicina, biotecnología, imagen magnética resonante, almacenamiento de data y remediación medioambiental. Estas nanopartículas pueden ser ampliamente utilizadas en el tratamiento de aguas como adsorbentes efectivos de muchos contaminantes, para luego ser fácilmente separados del agua usando un campo magnético externo, facilitando la reducción de muchos contaminantes encontrados en aguas subterráneas. Sin embargo, faltan estudios que relacionen una caracterización completa de las fases cristalinas de estas fases de óxido de hierro involucradas con las propiedades de adsorción de arsénico.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2019-03-18T15:36:24Z
dc.date.available.none.fl_str_mv 2019-03-18T15:36:24Z
dc.date.issued.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.citation.none.fl_str_mv Mejía, M. (2018). Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Físicas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12672/10122
identifier_str_mv Mejía, M. (2018). Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Físicas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.
url https://hdl.handle.net/20.500.12672/10122
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Nacional Mayor de San Marcos
dc.source.none.fl_str_mv Universidad Nacional Mayor de San Marcos
Repositorio de Tesis - UNMSM
reponame:UNMSM-Tesis
instname:Universidad Nacional Mayor de San Marcos
instacron:UNMSM
instname_str Universidad Nacional Mayor de San Marcos
instacron_str UNMSM
institution UNMSM
reponame_str UNMSM-Tesis
collection UNMSM-Tesis
bitstream.url.fl_str_mv https://cybertesis.unmsm.edu.pe/bitstreams/5fb2b002-ef5e-46b7-a066-314dc9fe226e/download
https://cybertesis.unmsm.edu.pe/bitstreams/1762efff-e8bd-49e2-9fd8-41af23fa7e45/download
https://cybertesis.unmsm.edu.pe/bitstreams/0c966b28-d8cf-4ec0-bb8c-377fa9132703/download
https://cybertesis.unmsm.edu.pe/bitstreams/6916612c-91ba-4896-9e05-13fbc38f9f00/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
1e9c2a00c7ec2afb65138499ca37f069
03abe31cf165b960069735760a4f5cd8
d502633f6c4c3f7a256ea30fc825946c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Cybertesis UNMSM
repository.mail.fl_str_mv cybertesis@unmsm.edu.pe
_version_ 1847253238845276160
spelling Bravo Cabrejos, Jorge AurelioMejía Santillán, Mirian Esther2019-03-18T15:36:24Z2019-03-18T15:36:24Z2018Mejía, M. (2018). Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicas. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Físicas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.https://hdl.handle.net/20.500.12672/10122Adsorbentes magnéticos de nanopartículas de óxidos de hierro como magnetita (Fe3O4) y maghemita (-Fe2O3) fueron sintetizados y usados en la remoción de arsénico As (V) en agua. Estas nanopartículas de óxidos de hierro son materiales excepcionales debido a su buena capacidad de adsorción y a sus propiedades magnéticas. Busca investigar la idoneidad de las nanopartículas de Fe3O4 para la adsorción de As (V) y comparar sus propiedades físicas, potencial y eficiencia con respecto a las nanopartículas de - Fe2O3. Las nanopartículas magnéticas fueron obtenidas a través de métodos químicos en solución acuosa, oxidación parcial activada térmicamente y transformaciones de fase sólida de partículas en suspensión. Las partículas obtenidas fueron caracterizadas por difractometría de rayos X, fluorescencia de rayos X, espectroscopia Mössbauer, microscopia electrónica de barrido y por espectroscopia Raman. También se realizaron medidas magnéticas y medidas de potencial Zeta. Las propiedades morfológicas y físicas de las partículas fueron correlacionadas con sus propiedades de adsorción en agua con respecto al arsénico (V). La capacidad de adsorción de los óxidos de hierro obtenidos incrementa al cambiar la fase cristalina involucrada, e.d., en la transformación de magnetita a maghemita. Para probar la viabilidad de la remoción de arsénico, se utilizó 0,05 g de nanopartículas en 50 mL de solución de arsénico a una concentración de 100 ppb. Las nanopartículas estuvieron en contacto con la solución por 1 min, 5 min, 30 min, 90 min y 300 min. Se encontró que las nanopartículas de maghemita pueden disminuir el contenido de arsénico en el agua de manera eficiente, por debajo del límite establecido por el Organismo Mundial de Salud de 10 ppb. Por lo tanto, estos resultados sugieren que el uso de estas nanopartículas magnéticas podría ser un proceso viable de remoción de arsénico de agua potable. La tecnología de remediación tradicional confía grandemente en la adsorción para la remoción de arsénico del agua usando materiales como óxidos de hierro, alúmina activada, carbón activado, sílice, membranas adsorbentes, etc. Estos métodos pueden ser complejos, costosos, poco eficientes y producir una gran cantidad de desperdicios. Por lo tanto, es necesario desarrollar un método de eliminación de arsénico económicamente factible y altamente eficiente. Debido a su bajo costo y alta afinidad por diferentes especies de arsénico, los óxidos de hierro se han utilizado ampliamente para la eliminación de arsénico con resultados exitosos. Durante las últimas décadas, debido a la emergencia de una nueva generación de tecnología de materiales de alto nivel, el número de investigaciones involucradas envueltas en nanomateriales se ha incrementado exponencialmente. Esto es debido a sus nobles propiedades físicoquímicas, las cuales difieren entre sí según sea como átomos aislados o como fase bulk. Las nanopartículas magnéticas que han estado bajo investigaciones por décadas y que son de gran interés científico en un amplio rango de disciplinas son la magnetita (Fe3O4) y la maghemita (-Fe2O3), las cuales son consideradas como importantes minerales para muchos campos de estudio. Su uso se ha ampliado en gran medida en procesos industriales como fluidos magnéticos, catálisis, biomedicina, biotecnología, imagen magnética resonante, almacenamiento de data y remediación medioambiental. Estas nanopartículas pueden ser ampliamente utilizadas en el tratamiento de aguas como adsorbentes efectivos de muchos contaminantes, para luego ser fácilmente separados del agua usando un campo magnético externo, facilitando la reducción de muchos contaminantes encontrados en aguas subterráneas. Sin embargo, faltan estudios que relacionen una caracterización completa de las fases cristalinas de estas fases de óxido de hierro involucradas con las propiedades de adsorción de arsénico.TesisspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Nacional Mayor de San MarcosRepositorio de Tesis - UNMSMreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMNanoestructurasNanopartículas - Propiedades magnéticasMetales pesados - Absorción y adsorciónArsénico - AnálisisDescontaminaciónContaminantes orgánicos en el aguaAguas subterráneas - Contaminaciónhttps://purl.org/pe-repo/ocde/ford#1.03.03Interacción de nanoestructuras de magnetita con arsénico, implicaciones en las propiedades físicasinfo:eu-repo/semantics/masterThesisSUNEDUMagíster en Física con mención en Física del Estado SólidoUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Físicas. Unidad de PosgradoMaestriaFísica con mención en Física del Estado Sólido06646670https://orcid.org/0000-0001-7754-0396Peña Rodríguez, Víctor AntonioTorres Tapia, Eusebio CastorRojas Ayala, ChachiFlores del Pino de Wright, Lisveth Vilmahttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesis07602971064455900993447607935967LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/5fb2b002-ef5e-46b7-a066-314dc9fe226e/download8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALMejia_sm.pdfMejia_sm.pdfapplication/pdf4518051https://cybertesis.unmsm.edu.pe/bitstreams/1762efff-e8bd-49e2-9fd8-41af23fa7e45/download1e9c2a00c7ec2afb65138499ca37f069MD53TEXTMejia_sm.pdf.txtMejia_sm.pdf.txtExtracted texttext/plain170942https://cybertesis.unmsm.edu.pe/bitstreams/0c966b28-d8cf-4ec0-bb8c-377fa9132703/download03abe31cf165b960069735760a4f5cd8MD54THUMBNAILMejia_sm.pdf.jpgMejia_sm.pdf.jpgGenerated Thumbnailimage/jpeg9315https://cybertesis.unmsm.edu.pe/bitstreams/6916612c-91ba-4896-9e05-13fbc38f9f00/downloadd502633f6c4c3f7a256ea30fc825946cMD5520.500.12672/10122oai:cybertesis.unmsm.edu.pe:20.500.12672/101222021-12-30 03:06:28.996https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.422088
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).