Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos
Descripción del Articulo
Se muestra que todo f : M → M difeomorfismo uniformemente hiperbólico de clase C 2 que preserva la medida de Lebesgue en M, donde M es una variedad Riemanniana compacta de clase C ∞ es ergódico, para ello utilizamos el método conocido como el Argumento de Hopf expuesto en el libro (Hopf, 1939). Adem...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2021 |
Institución: | Universidad Nacional Mayor de San Marcos |
Repositorio: | UNMSM-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/16628 |
Enlace del recurso: | https://hdl.handle.net/20.500.12672/16628 |
Nivel de acceso: | acceso abierto |
Materia: | Funciones analíticas Ecuaciones diferenciales - Soluciones numéricas https://purl.org/pe-repo/ocde/ford#1.01.01 |
id |
UNMS_d3d5da6a2fcc2fb1e271050100bafe8d |
---|---|
oai_identifier_str |
oai:cybertesis.unmsm.edu.pe:20.500.12672/16628 |
network_acronym_str |
UNMS |
network_name_str |
UNMSM-Tesis |
repository_id_str |
410 |
dc.title.none.fl_str_mv |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos |
title |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos |
spellingShingle |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos Abanto Montoya, Jorge Luis Funciones analíticas Ecuaciones diferenciales - Soluciones numéricas https://purl.org/pe-repo/ocde/ford#1.01.01 |
title_short |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos |
title_full |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos |
title_fullStr |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos |
title_full_unstemmed |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos |
title_sort |
Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos |
author |
Abanto Montoya, Jorge Luis |
author_facet |
Abanto Montoya, Jorge Luis |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Crisóstomo Parejas, Jorge Luis |
dc.contributor.author.fl_str_mv |
Abanto Montoya, Jorge Luis |
dc.subject.none.fl_str_mv |
Funciones analíticas Ecuaciones diferenciales - Soluciones numéricas |
topic |
Funciones analíticas Ecuaciones diferenciales - Soluciones numéricas https://purl.org/pe-repo/ocde/ford#1.01.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.01 |
description |
Se muestra que todo f : M → M difeomorfismo uniformemente hiperbólico de clase C 2 que preserva la medida de Lebesgue en M, donde M es una variedad Riemanniana compacta de clase C ∞ es ergódico, para ello utilizamos el método conocido como el Argumento de Hopf expuesto en el libro (Hopf, 1939). Además daremos un ejemplo interesante denominado la pesadilla de Fubini que está expuesto en el artículo (Milnor, 1997) que nos permite comprender la definición y sus propiedades de las foliaciones estables e inestables, esto ayudara para demostrar la ergodicidad de f. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-08T22:14:25Z |
dc.date.available.none.fl_str_mv |
2021-06-08T22:14:25Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.citation.none.fl_str_mv |
Abanto, J. (2021). Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12672/16628 |
identifier_str_mv |
Abanto, J. (2021). Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM. |
url |
https://hdl.handle.net/20.500.12672/16628 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos |
dc.source.none.fl_str_mv |
Universidad Nacional Mayor de San Marcos Repositorio de Tesis - UNMSM reponame:UNMSM-Tesis instname:Universidad Nacional Mayor de San Marcos instacron:UNMSM |
instname_str |
Universidad Nacional Mayor de San Marcos |
instacron_str |
UNMSM |
institution |
UNMSM |
reponame_str |
UNMSM-Tesis |
collection |
UNMSM-Tesis |
bitstream.url.fl_str_mv |
https://cybertesis.unmsm.edu.pe/bitstreams/0d5e010b-d52a-432f-813f-2d15bb22a21b/download https://cybertesis.unmsm.edu.pe/bitstreams/a317b24c-035e-4808-b606-d5a412fab434/download https://cybertesis.unmsm.edu.pe/bitstreams/ac6f722c-602e-4620-8d3b-8025ff2fa99a/download https://cybertesis.unmsm.edu.pe/bitstreams/3e6fa0fb-bba5-4150-b8b1-564fb71d56fb/download |
bitstream.checksum.fl_str_mv |
65ff7ca615a3481090161005837ba09f 8a4605be74aa9ea9d79846c1fba20a33 6beb4faf0358a0222e69f2d8aebbe17e ebaf87b15d5f5629d47f46b7dc8eb892 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Cybertesis UNMSM |
repository.mail.fl_str_mv |
cybertesis@unmsm.edu.pe |
_version_ |
1841549038068957184 |
spelling |
Crisóstomo Parejas, Jorge LuisAbanto Montoya, Jorge Luis2021-06-08T22:14:25Z2021-06-08T22:14:25Z2021Abanto, J. (2021). Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicos. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM.https://hdl.handle.net/20.500.12672/16628Se muestra que todo f : M → M difeomorfismo uniformemente hiperbólico de clase C 2 que preserva la medida de Lebesgue en M, donde M es una variedad Riemanniana compacta de clase C ∞ es ergódico, para ello utilizamos el método conocido como el Argumento de Hopf expuesto en el libro (Hopf, 1939). Además daremos un ejemplo interesante denominado la pesadilla de Fubini que está expuesto en el artículo (Milnor, 1997) que nos permite comprender la definición y sus propiedades de las foliaciones estables e inestables, esto ayudara para demostrar la ergodicidad de f.application/pdfspaUniversidad Nacional Mayor de San MarcosPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Nacional Mayor de San MarcosRepositorio de Tesis - UNMSMreponame:UNMSM-Tesisinstname:Universidad Nacional Mayor de San Marcosinstacron:UNMSMFunciones analíticasEcuaciones diferenciales - Soluciones numéricashttps://purl.org/pe-repo/ocde/ford#1.01.01Argumento de Hopf para sistemas dinámicos uniformemente hiperbólicosinfo:eu-repo/semantics/bachelorThesisSUNEDULicenciado en MatemáticaUniversidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Escuela Profesional de MatemáticaMatemática43688114https://orcid.org/0000-0002-9049-412541640808541026Benazic Tome, Renato MarioLuyo Sánchez, José Raúlhttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesis0644566809394743ORIGINALAbanto_mj.pdfAbanto_mj.pdfapplication/pdf1302289https://cybertesis.unmsm.edu.pe/bitstreams/0d5e010b-d52a-432f-813f-2d15bb22a21b/download65ff7ca615a3481090161005837ba09fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://cybertesis.unmsm.edu.pe/bitstreams/a317b24c-035e-4808-b606-d5a412fab434/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAbanto_mj.pdf.txtAbanto_mj.pdf.txtExtracted texttext/plain108019https://cybertesis.unmsm.edu.pe/bitstreams/ac6f722c-602e-4620-8d3b-8025ff2fa99a/download6beb4faf0358a0222e69f2d8aebbe17eMD55THUMBNAILAbanto_mj.pdf.jpgAbanto_mj.pdf.jpgGenerated Thumbnailimage/jpeg13147https://cybertesis.unmsm.edu.pe/bitstreams/3e6fa0fb-bba5-4150-b8b1-564fb71d56fb/downloadebaf87b15d5f5629d47f46b7dc8eb892MD5620.500.12672/16628oai:cybertesis.unmsm.edu.pe:20.500.12672/166282024-08-16 02:12:14.518https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://cybertesis.unmsm.edu.peCybertesis UNMSMcybertesis@unmsm.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).