Operadores θ-monótonos en espacios de Banach reflexivos
Descripción del Articulo
        En el presente trabajo, se siguen las ideas de [2] para operadores σ-monótonos, probamos la acotación local de un operador θ-monótono multivaluado en el contexto de los espacios de Banach reflexivos de dimensión infinita con ayuda de las bifunciones ([11]) y asumiendo la semicontinuidad inferior déb...
              
            
    
                        | Autor: | |
|---|---|
| Formato: | tesis de maestría | 
| Fecha de Publicación: | 2021 | 
| Institución: | Universidad Nacional Mayor de San Marcos | 
| Repositorio: | UNMSM-Tesis | 
| Lenguaje: | español | 
| OAI Identifier: | oai:cybertesis.unmsm.edu.pe:20.500.12672/17276 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12672/17276 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Operadores no lineales Algebra de operadores Espacios de Banach Funciones (Matemáticas) https://purl.org/pe-repo/ocde/ford#1.01.02  | 
| Sumario: | En el presente trabajo, se siguen las ideas de [2] para operadores σ-monótonos, probamos la acotación local de un operador θ-monótono multivaluado en el contexto de los espacios de Banach reflexivos de dimensión infinita con ayuda de las bifunciones ([11]) y asumiendo la semicontinuidad inferior débil de θp¨, yq. Para esto mostramos que el uso de funciones multivaluadas es mucho más conveniente que las funciones en el sentido usual. Por otro lado, cabe resaltar que los operadores θ-monótonos definidos en [32] al ser una generalización de los operadores uniformemente monótonos, fuertemente monótonos, monótonos en el sentido de Minty-Browder, ε-monótonos, γ-monótonos, pre-monótonos, σ-monótonos y αmonótonos, todo resultado demostrado para un operador θ-monótono se puede aplicar directamente a los operadores mencionados. También, utilizando las ideas de [2], conseguimos hacer una demostración directa para la acotación local de un operador θ-monótono en Rn , que fue demostrada de forma indirecta en [32], y para operadores σ-monótonos demostradas de forma indirecta en [22] y también de forma directa en [2]. Finalmente, se realiza un algoritmo y varios gráficos en 3D y 2D usando Geogebra para una versión geométrica de los ejemplos obtenidos. | 
|---|
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).