Redes neuronales recurrentes y modelos arima para el pronóstico de la inflación en el Perú

Descripción del Articulo

The purpose of this research is to compare the ARIMA methodology and Recurrent _x000D_ Neural Networks to find the best model to forecast Inflation in Peru. The research consisted _x000D_ of a study sample from January 2000 to December 2021._x000D_ When designing the series model for each series, a...

Descripción completa

Detalles Bibliográficos
Autor: Chilón Ayay, Anghie Lizzeth
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad Nacional de Trujillo
Repositorio:UNITRU-Tesis
Lenguaje:español
OAI Identifier:oai:dspace.unitru.edu.pe:20.500.14414/18318
Enlace del recurso:https://hdl.handle.net/20.500.14414/18318
Nivel de acceso:acceso abierto
Materia:Modelos ARIMA
Redes Neuronales Recurrentes
LSTM
Inflación
Descripción
Sumario:The purpose of this research is to compare the ARIMA methodology and Recurrent _x000D_ Neural Networks to find the best model to forecast Inflation in Peru. The research consisted _x000D_ of a study sample from January 2000 to December 2021._x000D_ When designing the series model for each series, a forecast was made for all the _x000D_ months of the year 2022, which were compared with the real data to determine which _x000D_ methodology makes a better forecast. The results indicated that the previous LSTM recurrent _x000D_ neural network model obtained a lower forecast evaluation error compared to the ARIMA _x000D_ methodology, for which the RMSE, MAE, MAPE, EMC and MPE indicators were used
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).