Modelo para la predicción del consumo de agua potable mediante redes neuronales artificiales en la ciudad de Iquitos

Descripción del Articulo

The research work addresses the problem of water supply management in the city of Iquitos, where the question arises: Can an Artificial Neural Network model based on relevant historical data improve the prediction of the distributed volume of drinking water in the City of Iquitos?, to answer this qu...

Descripción completa

Detalles Bibliográficos
Autores: Carranza Serrantes, Fernando Jan Pierre, Vargas Lozano, Franco Xavier
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Universidad Nacional De La Amazonía Peruana
Repositorio:UNAPIquitos-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.unapiquitos.edu.pe:20.500.12737/9334
Enlace del recurso:https://hdl.handle.net/20.500.12737/9334
Nivel de acceso:acceso abierto
Materia:Ingeniería dirigida por modelos
Modelo de simulación
Redes neuronales
Redes de distribución de agua
Desarrollo de software de aplicación
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The research work addresses the problem of water supply management in the city of Iquitos, where the question arises: Can an Artificial Neural Network model based on relevant historical data improve the prediction of the distributed volume of drinking water in the City of Iquitos?, to answer this question, the general objective of implementing an Artificial Neural Network model based on relevant historical data and evaluating its ability to accurately predict the distributed volume of drinking water in the City of Iquitos was raised. The methodology used was of the applied type, with a quantitative approach, the sample corresponded to the historical data of distributed volume of drinking water during the last six years. The results showed that the Artificial Neural Network model was able to accurately predict the distributed volume of drinking water in the city, identifying the maximum temperature, the minimum temperature, and the population as significant variables for the prediction of drinking water consumption. The implementation of this model can be useful for the management of water supply in the city and for future research in the field.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).