Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.

Descripción del Articulo

This study uses artificial intelligence to comprehensively evaluate digital elevation models (DEMs), specifically SRTM, AlosPalsar, and ASTER, in the Moquegua region of Peru. Three recognized standards were used to evaluate the positional accuracy of DEMs: EMAS, NMAS, and NSSDA. The DEMs were also a...

Descripción completa

Detalles Bibliográficos
Autores: Cuentas Toledo, Osmar, Cuentas Toledo, Maryluz, Quispe Cohaila, Alberto Bacilio, Machado Da Silva, Filho Aloísio, Quintana Quispe, Jose Orlando
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Nacional de Moquegua
Repositorio:UNAM-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.unam.edu.pe:UNAM/591
Enlace del recurso:https://repositorio.unam.edu.pe/handle/UNAM/591
https://doi.org/10.62441/nano-ntp.v20iS1.9
Nivel de acceso:acceso abierto
Materia:https://purl.org/pe-repo/ocde/ford#2.00.00
id UNAM_c4ceb2a99137c586746647ed4a8aae9d
oai_identifier_str oai:repositorio.unam.edu.pe:UNAM/591
network_acronym_str UNAM
network_name_str UNAM-Institucional
repository_id_str .
dc.title.none.fl_str_mv Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
title Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
spellingShingle Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
Cuentas Toledo, Osmar
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
title_full Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
title_fullStr Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
title_full_unstemmed Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
title_sort Application of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.
author Cuentas Toledo, Osmar
author_facet Cuentas Toledo, Osmar
Cuentas Toledo, Maryluz
Quispe Cohaila, Alberto Bacilio
Machado Da Silva, Filho Aloísio
Quintana Quispe, Jose Orlando
author_role author
author2 Cuentas Toledo, Maryluz
Quispe Cohaila, Alberto Bacilio
Machado Da Silva, Filho Aloísio
Quintana Quispe, Jose Orlando
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Cuentas Toledo, Osmar
Cuentas Toledo, Maryluz
Quispe Cohaila, Alberto Bacilio
Machado Da Silva, Filho Aloísio
Quintana Quispe, Jose Orlando
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
topic https://purl.org/pe-repo/ocde/ford#2.00.00
description This study uses artificial intelligence to comprehensively evaluate digital elevation models (DEMs), specifically SRTM, AlosPalsar, and ASTER, in the Moquegua region of Peru. Three recognized standards were used to evaluate the positional accuracy of DEMs: EMAS, NMAS, and NSSDA. The DEMs were also assessed through correlation, the coefficient of determination (R2) and the Bland-Altman Graph, which allowed us to understand and visualize the relationship and agreement between the elevations extracted from the DEMs and the altimetric control network of the national chart of Peru at a scale of 1:25000. The correlation and R2 revealed a solid relationship and a high degree of explanation for the variability of the elevations observed by the MDEs. The Bland-Altman plots confirmed the agreement between the elevations predicted by the MDEs and those observed at the points of the altimetric control network. This study highlights the importance and value of combining artificial intelligence techniques with statistical validation methods and positional accuracy standards to ensure the accuracy and reliability of EDMs in hydrological applications, thus providing a robust and verifiable framework for future research in this domain.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-03T20:03:38Z
dc.date.available.none.fl_str_mv 2024-10-03T20:03:38Z
dc.date.issued.fl_str_mv 2024-04-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unam.edu.pe/handle/UNAM/591
dc.identifier.doi.none.fl_str_mv https://doi.org/10.62441/nano-ntp.v20iS1.9
url https://repositorio.unam.edu.pe/handle/UNAM/591
https://doi.org/10.62441/nano-ntp.v20iS1.9
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Nanotechnology Perceptions
dc.relation.uri.none.fl_str_mv https://doi.org/10.62441/nano-ntp.v20iS1.9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv Creative Commons Attribution 4.0 International License.
eu_rights_str_mv openAccess
rights_invalid_str_mv Creative Commons Attribution 4.0 International License.
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Collegium Basilea
dc.publisher.country.none.fl_str_mv BR
publisher.none.fl_str_mv Collegium Basilea
dc.source.none.fl_str_mv Repositorio Institucional - UNAM
reponame:UNAM-Institucional
instname:Universidad Nacional de Moquegua
instacron:UNAM
instname_str Universidad Nacional de Moquegua
instacron_str UNAM
institution UNAM
reponame_str UNAM-Institucional
collection UNAM-Institucional
bitstream.url.fl_str_mv https://repositorio.unam.edu.pe/bitstreams/11ca9d07-0b2e-4bdb-9a99-aa36d6436b7d/download
https://repositorio.unam.edu.pe/bitstreams/4e01a206-a9df-47c9-87ec-c426614f62f2/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
f4abac248ee522ce20397cb0b4d20692
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio - Universidad Nacional de Moquegua
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1813093212026306560
spelling Cuentas Toledo, OsmarCuentas Toledo, MaryluzQuispe Cohaila, Alberto BacilioMachado Da Silva, Filho AloísioQuintana Quispe, Jose Orlando2024-10-03T20:03:38Z2024-10-03T20:03:38Z2024-04-15https://repositorio.unam.edu.pe/handle/UNAM/591https://doi.org/10.62441/nano-ntp.v20iS1.9This study uses artificial intelligence to comprehensively evaluate digital elevation models (DEMs), specifically SRTM, AlosPalsar, and ASTER, in the Moquegua region of Peru. Three recognized standards were used to evaluate the positional accuracy of DEMs: EMAS, NMAS, and NSSDA. The DEMs were also assessed through correlation, the coefficient of determination (R2) and the Bland-Altman Graph, which allowed us to understand and visualize the relationship and agreement between the elevations extracted from the DEMs and the altimetric control network of the national chart of Peru at a scale of 1:25000. The correlation and R2 revealed a solid relationship and a high degree of explanation for the variability of the elevations observed by the MDEs. The Bland-Altman plots confirmed the agreement between the elevations predicted by the MDEs and those observed at the points of the altimetric control network. This study highlights the importance and value of combining artificial intelligence techniques with statistical validation methods and positional accuracy standards to ensure the accuracy and reliability of EDMs in hydrological applications, thus providing a robust and verifiable framework for future research in this domain.application/pdfengCollegium BasileaBRNanotechnology Perceptionshttps://doi.org/10.62441/nano-ntp.v20iS1.9info:eu-repo/semantics/openAccessCreative Commons Attribution 4.0 International License.Repositorio Institucional - UNAMreponame:UNAM-Institucionalinstname:Universidad Nacional de Moqueguainstacron:UNAMApplication of Artificial Intelligence in the Evaluation of Positional Accuracy and Statistical Validation of Digital Elevation Models for Hydrological Studies.info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttps://purl.org/pe-repo/ocde/ford#2.00.00LICENSElicense.txtlicense.txtapplication/octet_stream1748https://repositorio.unam.edu.pe/bitstreams/11ca9d07-0b2e-4bdb-9a99-aa36d6436b7d/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALTHUMBNAIL10.jpgapplication/octet_stream7755https://repositorio.unam.edu.pe/bitstreams/4e01a206-a9df-47c9-87ec-c426614f62f2/downloadf4abac248ee522ce20397cb0b4d20692MD53UNAM/591oai:repositorio.unam.edu.pe:UNAM/5912024-10-03 15:08:48.544Creative Commons Attribution 4.0 International License.info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.unam.edu.peRepositorio - Universidad Nacional de Moqueguadspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.936319
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).