Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
Descripción del Articulo
The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a wa...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
| Repositorio: | SENAMHI-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/3019 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12542/3019 https://doi.org/10.24850/j-tyca-14-02-05 |
| Nivel de acceso: | acceso abierto |
| Materia: | Inundaciones Caudales Modelamiento Hidrológico https://purl.org/pe-repo/ocde/ford#1.05.11 conservacion y recuperacion de cuencas hidrograficas - Agua |
| Sumario: | The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a watershed and thus make decisions data-driven. This article investigates the applicability of the k-nearest neighbor (KNN) algorithm for forecasting the mean daily flows of the Ramis river, at the Ramis hydrometric station. As input to the KNN machine learning algorithm, we used a data set of mean basin precipitation and mean daily flow from hydrometeorological stations with various lags. The performance of the KNN algorithm was quantitatively evaluated with hydrological ability metrics such as mean absolute percentage error (MAPE), anomaly correlation coefficient (ACC), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE') and the spectral angle (SA). The results for forecasting the flows of the Ramis river with the k-nearest neighbor machine learning algorithm reached high levels of reliability with flow lags of one and two days and precipitation with three days. The algorithm used is simple but robust to make short-term flow forecasts and can be integrated as an alternative to strengthen the daily hydrological forecast of the Ramis river. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).