Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
Descripción del Articulo
The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a wa...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Servicio Nacional de Meteorología e Hidrología del Perú |
| Repositorio: | SENAMHI-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.senamhi.gob.pe:20.500.12542/3019 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12542/3019 https://doi.org/10.24850/j-tyca-14-02-05 |
| Nivel de acceso: | acceso abierto |
| Materia: | Inundaciones Caudales Modelamiento Hidrológico https://purl.org/pe-repo/ocde/ford#1.05.11 conservacion y recuperacion de cuencas hidrograficas - Agua |
| id |
SEAM_29eec8c9a9aba9cb2f54b2802ea5829c |
|---|---|
| oai_identifier_str |
oai:repositorio.senamhi.gob.pe:20.500.12542/3019 |
| network_acronym_str |
SEAM |
| network_name_str |
SENAMHI-Institucional |
| repository_id_str |
4818 |
| dc.title.es_PE.fl_str_mv |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru |
| dc.title.alternative.es_PE.fl_str_mv |
Modelado hidrológico basado en el algoritmo KNN una aplicación para el pronóstico de caudales diarios del río Ramis, Perú |
| title |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru |
| spellingShingle |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru Lujano Laura, Efrain Inundaciones Caudales Modelamiento Hidrológico https://purl.org/pe-repo/ocde/ford#1.05.11 conservacion y recuperacion de cuencas hidrograficas - Agua |
| title_short |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru |
| title_full |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru |
| title_fullStr |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru |
| title_full_unstemmed |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru |
| title_sort |
Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru |
| author |
Lujano Laura, Efrain |
| author_facet |
Lujano Laura, Efrain Lujano, Rene Huamani, Juan Carlos Lujano, Apolinario |
| author_role |
author |
| author2 |
Lujano, Rene Huamani, Juan Carlos Lujano, Apolinario |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Lujano Laura, Efrain Lujano, Rene Huamani, Juan Carlos Lujano, Apolinario |
| dc.subject.es_PE.fl_str_mv |
Inundaciones Caudales Modelamiento Hidrológico |
| topic |
Inundaciones Caudales Modelamiento Hidrológico https://purl.org/pe-repo/ocde/ford#1.05.11 conservacion y recuperacion de cuencas hidrograficas - Agua |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.11 |
| dc.subject.sinia.es_PE.fl_str_mv |
conservacion y recuperacion de cuencas hidrograficas - Agua |
| description |
The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a watershed and thus make decisions data-driven. This article investigates the applicability of the k-nearest neighbor (KNN) algorithm for forecasting the mean daily flows of the Ramis river, at the Ramis hydrometric station. As input to the KNN machine learning algorithm, we used a data set of mean basin precipitation and mean daily flow from hydrometeorological stations with various lags. The performance of the KNN algorithm was quantitatively evaluated with hydrological ability metrics such as mean absolute percentage error (MAPE), anomaly correlation coefficient (ACC), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE') and the spectral angle (SA). The results for forecasting the flows of the Ramis river with the k-nearest neighbor machine learning algorithm reached high levels of reliability with flow lags of one and two days and precipitation with three days. The algorithm used is simple but robust to make short-term flow forecasts and can be integrated as an alternative to strengthen the daily hydrological forecast of the Ramis river. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-12-11T21:47:03Z |
| dc.date.available.none.fl_str_mv |
2023-12-11T21:47:03Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.sinia.es_PE.fl_str_mv |
text/publicacion cientifica |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
| format |
article |
| status_str |
acceptedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/3019 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.24850/j-tyca-14-02-05 |
| dc.identifier.journal.es_PE.fl_str_mv |
Tecnología y ciencias del agua |
| dc.identifier.url.none.fl_str_mv |
https://hdl.handle.net/20.500.12542/3019 |
| url |
https://hdl.handle.net/20.500.12542/3019 https://doi.org/10.24850/j-tyca-14-02-05 |
| identifier_str_mv |
Tecnología y ciencias del agua |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.uri.es_PE.fl_str_mv |
https://www.revistatyca.org.mx/index.php/tyca/article/view/2851 |
| dc.rights.es_PE.fl_str_mv |
Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND) info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| rights_invalid_str_mv |
Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.coverage.spatial.none.fl_str_mv |
Río Ramis |
| dc.publisher.es_PE.fl_str_mv |
Instituto Mexicano de Tecnología del Agua |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú |
| dc.source.none.fl_str_mv |
reponame:SENAMHI-Institucional instname:Servicio Nacional de Meteorología e Hidrología del Perú instacron:SENAMHI |
| instname_str |
Servicio Nacional de Meteorología e Hidrología del Perú |
| instacron_str |
SENAMHI |
| institution |
SENAMHI |
| reponame_str |
SENAMHI-Institucional |
| collection |
SENAMHI-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/1/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/3/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/2/license.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/4/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/6/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.txt http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/5/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpg http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/7/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.jpg |
| bitstream.checksum.fl_str_mv |
dae1d29c6e734ed585104ecb7f7b26f6 6084f5d7e147e50fd9526eb5caf042f6 8a4605be74aa9ea9d79846c1fba20a33 5b6020be0aa9a30bfea49963c929a4cb 9bf6a2184940acc4764a1518ff558ebf 529c997d8d33cb1643ff375cfb9ae1bf 5b20e478faac94a829d6615e7be6775a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional SENAMHI |
| repository.mail.fl_str_mv |
repositorio@senamhi.gob.pe |
| _version_ |
1846967681066991616 |
| spelling |
Lujano Laura, EfrainLujano, ReneHuamani, Juan CarlosLujano, ApolinarioRío Ramis2023-12-11T21:47:03Z2023-12-11T21:47:03Z2023https://hdl.handle.net/20.500.12542/3019https://doi.org/10.24850/j-tyca-14-02-05Tecnología y ciencias del aguahttps://hdl.handle.net/20.500.12542/3019The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a watershed and thus make decisions data-driven. This article investigates the applicability of the k-nearest neighbor (KNN) algorithm for forecasting the mean daily flows of the Ramis river, at the Ramis hydrometric station. As input to the KNN machine learning algorithm, we used a data set of mean basin precipitation and mean daily flow from hydrometeorological stations with various lags. The performance of the KNN algorithm was quantitatively evaluated with hydrological ability metrics such as mean absolute percentage error (MAPE), anomaly correlation coefficient (ACC), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE') and the spectral angle (SA). The results for forecasting the flows of the Ramis river with the k-nearest neighbor machine learning algorithm reached high levels of reliability with flow lags of one and two days and precipitation with three days. The algorithm used is simple but robust to make short-term flow forecasts and can be integrated as an alternative to strengthen the daily hydrological forecast of the Ramis river.application/pdfspaInstituto Mexicano de Tecnología del AguaPEhttps://www.revistatyca.org.mx/index.php/tyca/article/view/2851Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIInundacionesCaudalesModelamiento Hidrológicohttps://purl.org/pe-repo/ocde/ford#1.05.11conservacion y recuperacion de cuencas hidrograficas - AguaHydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, PeruModelado hidrológico basado en el algoritmo KNN una aplicación para el pronóstico de caudales diarios del río Ramis, Perúinfo:eu-repo/semantics/articletext/publicacion cientificainfo:eu-repo/semantics/acceptedVersionORIGINALHydrological-modeling-based-on-the-KNN-algorithm_2023.pdfHydrological-modeling-based-on-the-KNN-algorithm_2023.pdfTexto Completoapplication/pdf2904987http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/1/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdfdae1d29c6e734ed585104ecb7f7b26f6MD51Modelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdfModelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdfTexto Completoapplication/pdf2881649http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/3/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf6084f5d7e147e50fd9526eb5caf042f6MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txtHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txtExtracted texttext/plain48938http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/4/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txt5b6020be0aa9a30bfea49963c929a4cbMD54Modelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.txtModelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.txtExtracted texttext/plain50777http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/6/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.txt9bf6a2184940acc4764a1518ff558ebfMD56THUMBNAILHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpgHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpgGenerated Thumbnailimage/jpeg6638http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/5/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpg529c997d8d33cb1643ff375cfb9ae1bfMD55Modelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.jpgModelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.jpgGenerated Thumbnailimage/jpeg6433http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/7/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.jpg5b20e478faac94a829d6615e7be6775aMD5720.500.12542/3019oai:repositorio.senamhi.gob.pe:20.500.12542/30192025-10-23 16:58:24.078Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.413352 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).