Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru

Descripción del Articulo

The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a wa...

Descripción completa

Detalles Bibliográficos
Autores: Lujano Laura, Efrain, Lujano, Rene, Huamani, Juan Carlos, Lujano, Apolinario
Formato: artículo
Fecha de Publicación:2023
Institución:Servicio Nacional de Meteorología e Hidrología del Perú
Repositorio:SENAMHI-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.senamhi.gob.pe:20.500.12542/3019
Enlace del recurso:https://hdl.handle.net/20.500.12542/3019
https://doi.org/10.24850/j-tyca-14-02-05
Nivel de acceso:acceso abierto
Materia:Inundaciones
Caudales
Modelamiento Hidrológico
https://purl.org/pe-repo/ocde/ford#1.05.11
conservacion y recuperacion de cuencas hidrograficas - Agua
id SEAM_29eec8c9a9aba9cb2f54b2802ea5829c
oai_identifier_str oai:repositorio.senamhi.gob.pe:20.500.12542/3019
network_acronym_str SEAM
network_name_str SENAMHI-Institucional
repository_id_str 4818
dc.title.es_PE.fl_str_mv Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
dc.title.alternative.es_PE.fl_str_mv Modelado hidrológico basado en el algoritmo KNN una aplicación para el pronóstico de caudales diarios del río Ramis, Perú
title Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
spellingShingle Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
Lujano Laura, Efrain
Inundaciones
Caudales
Modelamiento Hidrológico
https://purl.org/pe-repo/ocde/ford#1.05.11
conservacion y recuperacion de cuencas hidrograficas - Agua
title_short Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
title_full Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
title_fullStr Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
title_full_unstemmed Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
title_sort Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru
author Lujano Laura, Efrain
author_facet Lujano Laura, Efrain
Lujano, Rene
Huamani, Juan Carlos
Lujano, Apolinario
author_role author
author2 Lujano, Rene
Huamani, Juan Carlos
Lujano, Apolinario
author2_role author
author
author
dc.contributor.author.fl_str_mv Lujano Laura, Efrain
Lujano, Rene
Huamani, Juan Carlos
Lujano, Apolinario
dc.subject.es_PE.fl_str_mv Inundaciones
Caudales
Modelamiento Hidrológico
topic Inundaciones
Caudales
Modelamiento Hidrológico
https://purl.org/pe-repo/ocde/ford#1.05.11
conservacion y recuperacion de cuencas hidrograficas - Agua
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.11
dc.subject.sinia.es_PE.fl_str_mv conservacion y recuperacion de cuencas hidrograficas - Agua
description The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a watershed and thus make decisions data-driven. This article investigates the applicability of the k-nearest neighbor (KNN) algorithm for forecasting the mean daily flows of the Ramis river, at the Ramis hydrometric station. As input to the KNN machine learning algorithm, we used a data set of mean basin precipitation and mean daily flow from hydrometeorological stations with various lags. The performance of the KNN algorithm was quantitatively evaluated with hydrological ability metrics such as mean absolute percentage error (MAPE), anomaly correlation coefficient (ACC), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE') and the spectral angle (SA). The results for forecasting the flows of the Ramis river with the k-nearest neighbor machine learning algorithm reached high levels of reliability with flow lags of one and two days and precipitation with three days. The algorithm used is simple but robust to make short-term flow forecasts and can be integrated as an alternative to strengthen the daily hydrological forecast of the Ramis river.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-11T21:47:03Z
dc.date.available.none.fl_str_mv 2023-12-11T21:47:03Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.sinia.es_PE.fl_str_mv text/publicacion cientifica
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format article
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12542/3019
dc.identifier.doi.none.fl_str_mv https://doi.org/10.24850/j-tyca-14-02-05
dc.identifier.journal.es_PE.fl_str_mv Tecnología y ciencias del agua
dc.identifier.url.none.fl_str_mv https://hdl.handle.net/20.500.12542/3019
url https://hdl.handle.net/20.500.12542/3019
https://doi.org/10.24850/j-tyca-14-02-05
identifier_str_mv Tecnología y ciencias del agua
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.uri.es_PE.fl_str_mv https://www.revistatyca.org.mx/index.php/tyca/article/view/2851
dc.rights.es_PE.fl_str_mv Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.es_PE.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Río Ramis
dc.publisher.es_PE.fl_str_mv Instituto Mexicano de Tecnología del Agua
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - SENAMHI
Servicio Nacional de Meteorología e Hidrología del Perú
dc.source.none.fl_str_mv reponame:SENAMHI-Institucional
instname:Servicio Nacional de Meteorología e Hidrología del Perú
instacron:SENAMHI
instname_str Servicio Nacional de Meteorología e Hidrología del Perú
instacron_str SENAMHI
institution SENAMHI
reponame_str SENAMHI-Institucional
collection SENAMHI-Institucional
bitstream.url.fl_str_mv http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/1/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/3/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/2/license.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/4/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/6/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.txt
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/5/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpg
http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/7/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.jpg
bitstream.checksum.fl_str_mv dae1d29c6e734ed585104ecb7f7b26f6
6084f5d7e147e50fd9526eb5caf042f6
8a4605be74aa9ea9d79846c1fba20a33
5b6020be0aa9a30bfea49963c929a4cb
9bf6a2184940acc4764a1518ff558ebf
529c997d8d33cb1643ff375cfb9ae1bf
5b20e478faac94a829d6615e7be6775a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional SENAMHI
repository.mail.fl_str_mv repositorio@senamhi.gob.pe
_version_ 1846967681066991616
spelling Lujano Laura, EfrainLujano, ReneHuamani, Juan CarlosLujano, ApolinarioRío Ramis2023-12-11T21:47:03Z2023-12-11T21:47:03Z2023https://hdl.handle.net/20.500.12542/3019https://doi.org/10.24850/j-tyca-14-02-05Tecnología y ciencias del aguahttps://hdl.handle.net/20.500.12542/3019The forecast of river stream flows is of significant importance for the development of early warning systems. Artificial intelligence algorithms have proven to be an effective tool in hydrological modeling data-driven, since they allow establishing relationships between input and output data of a watershed and thus make decisions data-driven. This article investigates the applicability of the k-nearest neighbor (KNN) algorithm for forecasting the mean daily flows of the Ramis river, at the Ramis hydrometric station. As input to the KNN machine learning algorithm, we used a data set of mean basin precipitation and mean daily flow from hydrometeorological stations with various lags. The performance of the KNN algorithm was quantitatively evaluated with hydrological ability metrics such as mean absolute percentage error (MAPE), anomaly correlation coefficient (ACC), Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE') and the spectral angle (SA). The results for forecasting the flows of the Ramis river with the k-nearest neighbor machine learning algorithm reached high levels of reliability with flow lags of one and two days and precipitation with three days. The algorithm used is simple but robust to make short-term flow forecasts and can be integrated as an alternative to strengthen the daily hydrological forecast of the Ramis river.application/pdfspaInstituto Mexicano de Tecnología del AguaPEhttps://www.revistatyca.org.mx/index.php/tyca/article/view/2851Reconocimiento - No comercial - Sin obra derivada (CC BY-NC-ND)info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - SENAMHIServicio Nacional de Meteorología e Hidrología del Perúreponame:SENAMHI-Institucionalinstname:Servicio Nacional de Meteorología e Hidrología del Perúinstacron:SENAMHIInundacionesCaudalesModelamiento Hidrológicohttps://purl.org/pe-repo/ocde/ford#1.05.11conservacion y recuperacion de cuencas hidrograficas - AguaHydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, PeruModelado hidrológico basado en el algoritmo KNN una aplicación para el pronóstico de caudales diarios del río Ramis, Perúinfo:eu-repo/semantics/articletext/publicacion cientificainfo:eu-repo/semantics/acceptedVersionORIGINALHydrological-modeling-based-on-the-KNN-algorithm_2023.pdfHydrological-modeling-based-on-the-KNN-algorithm_2023.pdfTexto Completoapplication/pdf2904987http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/1/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdfdae1d29c6e734ed585104ecb7f7b26f6MD51Modelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdfModelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdfTexto Completoapplication/pdf2881649http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/3/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf6084f5d7e147e50fd9526eb5caf042f6MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txtHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txtExtracted texttext/plain48938http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/4/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.txt5b6020be0aa9a30bfea49963c929a4cbMD54Modelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.txtModelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.txtExtracted texttext/plain50777http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/6/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.txt9bf6a2184940acc4764a1518ff558ebfMD56THUMBNAILHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpgHydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpgGenerated Thumbnailimage/jpeg6638http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/5/Hydrological-modeling-based-on-the-KNN-algorithm_2023.pdf.jpg529c997d8d33cb1643ff375cfb9ae1bfMD55Modelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.jpgModelado-hidrológico-basado-en-el-algoritmo-KNN_2023.pdf.jpgGenerated Thumbnailimage/jpeg6433http://repositorio.senamhi.gob.pe/bitstream/20.500.12542/3019/7/Modelado-hidrol%c3%b3gico-basado-en-el-algoritmo-KNN_2023.pdf.jpg5b20e478faac94a829d6615e7be6775aMD5720.500.12542/3019oai:repositorio.senamhi.gob.pe:20.500.12542/30192025-10-23 16:58:24.078Repositorio Institucional SENAMHIrepositorio@senamhi.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.413352
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).