Detección y segmentación de peces utilizando técnicas de deep learning

Descripción del Articulo

En esta tesis se examina la detección y segmentación de peces con el objetivo de mejorar la crianza de truchas. La crianza de truchas enfrenta desafíos en la identificación y seguimiento preci- so de los peces, lo que dificulta el monitoreo de su crecimiento y salud, ayudando a determinar la abundan...

Descripción completa

Detalles Bibliográficos
Autor: Manrique Chalco, Walker Fernando
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:ULASALLE-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulasalle.edu.pe:20.500.12953/176
Enlace del recurso:http://hdl.handle.net/20.500.12953/176
Nivel de acceso:acceso abierto
Materia:Detección de peces
Segmentación de peces
Algortimo de aprendizaje profundo
Yolov5
U-net
http://purl.org/pe-repo/ocde/ford#1.02.01
http://purl.org/pe-repo/ocde/ford#2.02.06
Descripción
Sumario:En esta tesis se examina la detección y segmentación de peces con el objetivo de mejorar la crianza de truchas. La crianza de truchas enfrenta desafíos en la identificación y seguimiento preci- so de los peces, lo que dificulta el monitoreo de su crecimiento y salud, ayudando a determinar la abundancia relativa y rastrear los cambios en la población de peces. Para lograr el objetivo, se analizan los modernos algoritmos de detección de objetos basados en deep learning. A partir de este análisis, se han identificado las técnicas que se ajustan mejor a esta investigación, siendo esta YOLOv5 para la detección y U-Net para la segmentación. Dado que para el entrenamiento es necesario una gran cantidad de datos, se utilizaron distintos Datasets públicos y un dataset generado específicamente para esta investigación. Estos conjuntos de datos proporcionaron la diversidad necesaria para entrenar y evaluar los modelos de detección y segmentación de peces de manera más precisa y confiable. También se presenta una herramienta que permitirá usar los modelos presentados desde una termi- nal, haciendo que su uso sea práctico y sencillo, facilitando así su implementación en entornos de crianza de truchas. En conclusión, esta investigación ha demostrado que el uso de los algoritmos de detección YOLOv5 y de segmentación U-Net, junto con la utilización de diversos conjuntos de datos, ha permitido mejorar significativamente la precisión y el rendimiento en la detección y segmentación de peces. Estos avances pueden tener un impacto positivo en la crianza de truchas, al facilitar el monitoreo y seguimiento de los peces de manera más eficiente y confiable.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).