Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú

Descripción del Articulo

The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and p...

Descripción completa

Detalles Bibliográficos
Autores: Hoyos Cordova, Chardin, Lopez Portocarrero, Manuel Niño
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:inglés
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/4837
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/4837
Nivel de acceso:acceso abierto
Materia:Air pollution
Air quality
Recurrent artificial neural networks
Time-series forecasting
http://purl.org/pe-repo/ocde/ford#2.07.00
id UEPU_91dd81be1a89108c01a02cdd556b241d
oai_identifier_str oai:repositorio.upeu.edu.pe:20.500.12840/4837
network_acronym_str UEPU
network_name_str UPEU-Tesis
repository_id_str 4840
dc.title.en_ES.fl_str_mv Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
dc.title.alternative.en_ES.fl_str_mv Air quality assessmentand pollution forecasting using recurrent artificial neural networks in Metropolitan Lima-Peru
title Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
spellingShingle Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
Hoyos Cordova, Chardin
Air pollution
Air quality
Recurrent artificial neural networks
Time-series forecasting
http://purl.org/pe-repo/ocde/ford#2.07.00
title_short Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
title_full Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
title_fullStr Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
title_full_unstemmed Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
title_sort Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
author Hoyos Cordova, Chardin
author_facet Hoyos Cordova, Chardin
Lopez Portocarrero, Manuel Niño
author_role author
author2 Lopez Portocarrero, Manuel Niño
author2_role author
dc.contributor.advisor.fl_str_mv López Gonzales, Javier Linkolk
dc.contributor.author.fl_str_mv Hoyos Cordova, Chardin
Lopez Portocarrero, Manuel Niño
dc.subject.en_ES.fl_str_mv Air pollution
Air quality
Recurrent artificial neural networks
Time-series forecasting
topic Air pollution
Air quality
Recurrent artificial neural networks
Time-series forecasting
http://purl.org/pe-repo/ocde/ford#2.07.00
dc.subject.ocde.en_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.07.00
description The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and predicted using the recurrent artificial neural network known as Long-Short Term Memory networks (LSTM). The LSTM was implemented for the hourly prediction of PM10 based on the past values of this pollutant and three meteorological variables obtained from five monitoring stations. The model was evaluated under two validation schemes: the hold-out (HO) and the blocked-nested cross-validation (BNCV). The simulation results show that periods of low PM10 concentration are predicted with high precision. Whereas, for periods of high contamination, the LSTM network with BNCV has better predictability performance. In conclusion, recurrent artificial neural networks with BNCV adapt more precisely to critical pollution episodes and have better performance to forecast this type of environmental data, and can also be extrapolated to other pollutants.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-12T17:33:46Z
dc.date.available.none.fl_str_mv 2021-10-12T17:33:46Z
dc.date.issued.fl_str_mv 2021-08-23
dc.type.en_ES.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.upeu.edu.pe/handle/20.500.12840/4837
url http://repositorio.upeu.edu.pe/handle/20.500.12840/4837
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.en_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/es/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.format.en_ES.fl_str_mv application/pdf
dc.publisher.en_ES.fl_str_mv Universidad Peruana Unión
dc.publisher.country.en_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:UPEU-Tesis
instname:Universidad Peruana Unión
instacron:UPEU
instname_str Universidad Peruana Unión
instacron_str UPEU
institution UPEU
reponame_str UPEU-Tesis
collection UPEU-Tesis
bitstream.url.fl_str_mv https://repositorio.upeu.edu.pe/bitstreams/81024df1-e4cf-4f29-ad46-a0d2dcc0c3b2/download
https://repositorio.upeu.edu.pe/bitstreams/c72a1d53-fb8b-4bc4-ac57-4217f98fc7df/download
https://repositorio.upeu.edu.pe/bitstreams/e3c2e3dd-0ed2-4fc9-b688-86eb6e471daf/download
https://repositorio.upeu.edu.pe/bitstreams/eae4ab51-3f7d-4e09-a845-282f637246b5/download
bitstream.checksum.fl_str_mv 91934208bc08e9d5ede0be6a79bbb2a5
ff8658fc73ea29fe78987aa30fc51cfe
8a4605be74aa9ea9d79846c1fba20a33
b4255a0d4fac16308f974bf7f4a1c3ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv DSpace 7
repository.mail.fl_str_mv repositorio-help@upeu.edu.pe
_version_ 1835737720740118528
spelling López Gonzales, Javier LinkolkHoyos Cordova, ChardinLopez Portocarrero, Manuel Niño2021-10-12T17:33:46Z2021-10-12T17:33:46Z2021-08-23http://repositorio.upeu.edu.pe/handle/20.500.12840/4837The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and predicted using the recurrent artificial neural network known as Long-Short Term Memory networks (LSTM). The LSTM was implemented for the hourly prediction of PM10 based on the past values of this pollutant and three meteorological variables obtained from five monitoring stations. The model was evaluated under two validation schemes: the hold-out (HO) and the blocked-nested cross-validation (BNCV). The simulation results show that periods of low PM10 concentration are predicted with high precision. Whereas, for periods of high contamination, the LSTM network with BNCV has better predictability performance. In conclusion, recurrent artificial neural networks with BNCV adapt more precisely to critical pollution episodes and have better performance to forecast this type of environmental data, and can also be extrapolated to other pollutants.LIMAEscuela Profesional de Ingeniería AmbientalGestión Ambientalapplication/pdfengUniversidad Peruana UniónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/es/Air pollutionAir qualityRecurrent artificial neural networksTime-series forecastinghttp://purl.org/pe-repo/ocde/ford#2.07.00Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-PerúAir quality assessmentand pollution forecasting using recurrent artificial neural networks in Metropolitan Lima-Peruinfo:eu-repo/semantics/bachelorThesisreponame:UPEU-Tesisinstname:Universidad Peruana Unióninstacron:UPEUSUNEDUIngeniería AmbientalUniversidad Peruana Unión. Facultad de Ingeniería y ArquitecturaIngeniero Ambiental46071566https://orcid.org/0000-0003-0847-05527131469275588871521066Cruz Huaranga, Milda AmparoCurasi Rafael, NancyFernández Rojas, Joel HugoPérez Carpio, Jackson Edgardohttp://purl.org/pe-repo/renati/nivel#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisORIGINALChardin_Tesis_Licenciatura_2021.pdfChardin_Tesis_Licenciatura_2021.pdfapplication/pdf4256585https://repositorio.upeu.edu.pe/bitstreams/81024df1-e4cf-4f29-ad46-a0d2dcc0c3b2/download91934208bc08e9d5ede0be6a79bbb2a5MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upeu.edu.pe/bitstreams/c72a1d53-fb8b-4bc4-ac57-4217f98fc7df/downloadff8658fc73ea29fe78987aa30fc51cfeMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upeu.edu.pe/bitstreams/e3c2e3dd-0ed2-4fc9-b688-86eb6e471daf/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILChardin_Tesis_Licenciatura_2021.pdf.jpgChardin_Tesis_Licenciatura_2021.pdf.jpgGenerated Thumbnailimage/jpeg3367https://repositorio.upeu.edu.pe/bitstreams/eae4ab51-3f7d-4e09-a845-282f637246b5/downloadb4255a0d4fac16308f974bf7f4a1c3baMD5420.500.12840/4837oai:repositorio.upeu.edu.pe:20.500.12840/48372024-10-22 17:29:25.233http://creativecommons.org/licenses/by-nc-sa/3.0/es/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.upeu.edu.peDSpace 7repositorio-help@upeu.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.889614
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).