Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú
Descripción del Articulo
The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and p...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2021 |
Institución: | Universidad Peruana Unión |
Repositorio: | UPEU-Tesis |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.upeu.edu.pe:20.500.12840/4837 |
Enlace del recurso: | http://repositorio.upeu.edu.pe/handle/20.500.12840/4837 |
Nivel de acceso: | acceso abierto |
Materia: | Air pollution Air quality Recurrent artificial neural networks Time-series forecasting http://purl.org/pe-repo/ocde/ford#2.07.00 |
id |
UEPU_91dd81be1a89108c01a02cdd556b241d |
---|---|
oai_identifier_str |
oai:repositorio.upeu.edu.pe:20.500.12840/4837 |
network_acronym_str |
UEPU |
network_name_str |
UPEU-Tesis |
repository_id_str |
4840 |
dc.title.en_ES.fl_str_mv |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú |
dc.title.alternative.en_ES.fl_str_mv |
Air quality assessmentand pollution forecasting using recurrent artificial neural networks in Metropolitan Lima-Peru |
title |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú |
spellingShingle |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú Hoyos Cordova, Chardin Air pollution Air quality Recurrent artificial neural networks Time-series forecasting http://purl.org/pe-repo/ocde/ford#2.07.00 |
title_short |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú |
title_full |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú |
title_fullStr |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú |
title_full_unstemmed |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú |
title_sort |
Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú |
author |
Hoyos Cordova, Chardin |
author_facet |
Hoyos Cordova, Chardin Lopez Portocarrero, Manuel Niño |
author_role |
author |
author2 |
Lopez Portocarrero, Manuel Niño |
author2_role |
author |
dc.contributor.advisor.fl_str_mv |
López Gonzales, Javier Linkolk |
dc.contributor.author.fl_str_mv |
Hoyos Cordova, Chardin Lopez Portocarrero, Manuel Niño |
dc.subject.en_ES.fl_str_mv |
Air pollution Air quality Recurrent artificial neural networks Time-series forecasting |
topic |
Air pollution Air quality Recurrent artificial neural networks Time-series forecasting http://purl.org/pe-repo/ocde/ford#2.07.00 |
dc.subject.ocde.en_ES.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.07.00 |
description |
The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and predicted using the recurrent artificial neural network known as Long-Short Term Memory networks (LSTM). The LSTM was implemented for the hourly prediction of PM10 based on the past values of this pollutant and three meteorological variables obtained from five monitoring stations. The model was evaluated under two validation schemes: the hold-out (HO) and the blocked-nested cross-validation (BNCV). The simulation results show that periods of low PM10 concentration are predicted with high precision. Whereas, for periods of high contamination, the LSTM network with BNCV has better predictability performance. In conclusion, recurrent artificial neural networks with BNCV adapt more precisely to critical pollution episodes and have better performance to forecast this type of environmental data, and can also be extrapolated to other pollutants. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-12T17:33:46Z |
dc.date.available.none.fl_str_mv |
2021-10-12T17:33:46Z |
dc.date.issued.fl_str_mv |
2021-08-23 |
dc.type.en_ES.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.upeu.edu.pe/handle/20.500.12840/4837 |
url |
http://repositorio.upeu.edu.pe/handle/20.500.12840/4837 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.en_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/es/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/es/ |
dc.format.en_ES.fl_str_mv |
application/pdf |
dc.publisher.en_ES.fl_str_mv |
Universidad Peruana Unión |
dc.publisher.country.en_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:UPEU-Tesis instname:Universidad Peruana Unión instacron:UPEU |
instname_str |
Universidad Peruana Unión |
instacron_str |
UPEU |
institution |
UPEU |
reponame_str |
UPEU-Tesis |
collection |
UPEU-Tesis |
bitstream.url.fl_str_mv |
https://repositorio.upeu.edu.pe/bitstreams/81024df1-e4cf-4f29-ad46-a0d2dcc0c3b2/download https://repositorio.upeu.edu.pe/bitstreams/c72a1d53-fb8b-4bc4-ac57-4217f98fc7df/download https://repositorio.upeu.edu.pe/bitstreams/e3c2e3dd-0ed2-4fc9-b688-86eb6e471daf/download https://repositorio.upeu.edu.pe/bitstreams/eae4ab51-3f7d-4e09-a845-282f637246b5/download |
bitstream.checksum.fl_str_mv |
91934208bc08e9d5ede0be6a79bbb2a5 ff8658fc73ea29fe78987aa30fc51cfe 8a4605be74aa9ea9d79846c1fba20a33 b4255a0d4fac16308f974bf7f4a1c3ba |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace 7 |
repository.mail.fl_str_mv |
repositorio-help@upeu.edu.pe |
_version_ |
1835737720740118528 |
spelling |
López Gonzales, Javier LinkolkHoyos Cordova, ChardinLopez Portocarrero, Manuel Niño2021-10-12T17:33:46Z2021-10-12T17:33:46Z2021-08-23http://repositorio.upeu.edu.pe/handle/20.500.12840/4837The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and predicted using the recurrent artificial neural network known as Long-Short Term Memory networks (LSTM). The LSTM was implemented for the hourly prediction of PM10 based on the past values of this pollutant and three meteorological variables obtained from five monitoring stations. The model was evaluated under two validation schemes: the hold-out (HO) and the blocked-nested cross-validation (BNCV). The simulation results show that periods of low PM10 concentration are predicted with high precision. Whereas, for periods of high contamination, the LSTM network with BNCV has better predictability performance. In conclusion, recurrent artificial neural networks with BNCV adapt more precisely to critical pollution episodes and have better performance to forecast this type of environmental data, and can also be extrapolated to other pollutants.LIMAEscuela Profesional de Ingeniería AmbientalGestión Ambientalapplication/pdfengUniversidad Peruana UniónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/es/Air pollutionAir qualityRecurrent artificial neural networksTime-series forecastinghttp://purl.org/pe-repo/ocde/ford#2.07.00Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-PerúAir quality assessmentand pollution forecasting using recurrent artificial neural networks in Metropolitan Lima-Peruinfo:eu-repo/semantics/bachelorThesisreponame:UPEU-Tesisinstname:Universidad Peruana Unióninstacron:UPEUSUNEDUIngeniería AmbientalUniversidad Peruana Unión. Facultad de Ingeniería y ArquitecturaIngeniero Ambiental46071566https://orcid.org/0000-0003-0847-05527131469275588871521066Cruz Huaranga, Milda AmparoCurasi Rafael, NancyFernández Rojas, Joel HugoPérez Carpio, Jackson Edgardohttp://purl.org/pe-repo/renati/nivel#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisORIGINALChardin_Tesis_Licenciatura_2021.pdfChardin_Tesis_Licenciatura_2021.pdfapplication/pdf4256585https://repositorio.upeu.edu.pe/bitstreams/81024df1-e4cf-4f29-ad46-a0d2dcc0c3b2/download91934208bc08e9d5ede0be6a79bbb2a5MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upeu.edu.pe/bitstreams/c72a1d53-fb8b-4bc4-ac57-4217f98fc7df/downloadff8658fc73ea29fe78987aa30fc51cfeMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upeu.edu.pe/bitstreams/e3c2e3dd-0ed2-4fc9-b688-86eb6e471daf/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILChardin_Tesis_Licenciatura_2021.pdf.jpgChardin_Tesis_Licenciatura_2021.pdf.jpgGenerated Thumbnailimage/jpeg3367https://repositorio.upeu.edu.pe/bitstreams/eae4ab51-3f7d-4e09-a845-282f637246b5/downloadb4255a0d4fac16308f974bf7f4a1c3baMD5420.500.12840/4837oai:repositorio.upeu.edu.pe:20.500.12840/48372024-10-22 17:29:25.233http://creativecommons.org/licenses/by-nc-sa/3.0/es/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.upeu.edu.peDSpace 7repositorio-help@upeu.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.889614 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).