Evaluación de la calidad del aire y predicción de la contaminación utilizando redes neuronales artificiales recurrentes en Lima Metropolitana-Perú

Descripción del Articulo

The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and p...

Descripción completa

Detalles Bibliográficos
Autores: Hoyos Cordova, Chardin, Lopez Portocarrero, Manuel Niño
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:inglés
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/4837
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/4837
Nivel de acceso:acceso abierto
Materia:Air pollution
Air quality
Recurrent artificial neural networks
Time-series forecasting
http://purl.org/pe-repo/ocde/ford#2.07.00
Descripción
Sumario:The prediction of air pollution is of great importance in highly populated areas because it has a direct impact on both the management of the city’s economic activity and the health of its inhabitants. In this work, the spatio-temporal behavior of air quality in Metropolitan Lima was evaluated and predicted using the recurrent artificial neural network known as Long-Short Term Memory networks (LSTM). The LSTM was implemented for the hourly prediction of PM10 based on the past values of this pollutant and three meteorological variables obtained from five monitoring stations. The model was evaluated under two validation schemes: the hold-out (HO) and the blocked-nested cross-validation (BNCV). The simulation results show that periods of low PM10 concentration are predicted with high precision. Whereas, for periods of high contamination, the LSTM network with BNCV has better predictability performance. In conclusion, recurrent artificial neural networks with BNCV adapt more precisely to critical pollution episodes and have better performance to forecast this type of environmental data, and can also be extrapolated to other pollutants.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).