Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca

Descripción del Articulo

El presente estudio se llevó a cabo en el Instituto de Educación Superior Pedagógico Público Juliaca (IESPPJ), ubicado en el distrito de San Miguel de la Provincia de San Román, durante el año 2020, tuvo como objetivo general implementar un modelo de aprendizaje automático supervisado para identific...

Descripción completa

Detalles Bibliográficos
Autor: Rojas Pari, Rudy Jhean
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/4505
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/4505
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático supervisado
Bajo rendimiento académico
CRISP-DM
Data Mining
Random Forest Classifier
http://purl.org/pe-repo/ocde/ford#2.02.04
id UEPU_60d53177e38821a9a176985708a40513
oai_identifier_str oai:repositorio.upeu.edu.pe:20.500.12840/4505
network_acronym_str UEPU
network_name_str UPEU-Tesis
repository_id_str 4840
dc.title.en_ES.fl_str_mv Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
title Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
spellingShingle Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
Rojas Pari, Rudy Jhean
Aprendizaje automático supervisado
Bajo rendimiento académico
CRISP-DM
Data Mining
Random Forest Classifier
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
title_full Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
title_fullStr Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
title_full_unstemmed Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
title_sort Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca
author Rojas Pari, Rudy Jhean
author_facet Rojas Pari, Rudy Jhean
author_role author
dc.contributor.advisor.fl_str_mv Gómez Apaza, Roel Dante
dc.contributor.author.fl_str_mv Rojas Pari, Rudy Jhean
dc.subject.en_ES.fl_str_mv Aprendizaje automático supervisado
Bajo rendimiento académico
CRISP-DM
Data Mining
Random Forest Classifier
topic Aprendizaje automático supervisado
Bajo rendimiento académico
CRISP-DM
Data Mining
Random Forest Classifier
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.en_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description El presente estudio se llevó a cabo en el Instituto de Educación Superior Pedagógico Público Juliaca (IESPPJ), ubicado en el distrito de San Miguel de la Provincia de San Román, durante el año 2020, tuvo como objetivo general implementar un modelo de aprendizaje automático supervisado para identificar patrones de bajo rendimiento académico en los ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca, para su desarrollo de empleó la metodología de minería de datos denominado: CRISP-DM (Cross Industry Standard Process for Data Mining), el algoritmo Random Forest Classifier, dicho algoritmo fue entrenado con datos socioeconómicos, datos de admisión y datos académicos logrando un accuracy del 86%, permitiendo identificar las variables que más influyen en el rendimiento académico tales como: El promedio final del examen de admisión, edad, número de horas diarias que actualmente dedica al estudio, distrito en donde está ubicado el centro de estudios secundarios de procedencia, programa de estudios al que está postulando, número de dormitorios de su vivienda, cantidad de años en la que cursó la educación secundaria, idioma nativo que habla, ¿Cada cuánto tiempo recibes ayuda económica?, sexo, ¿La persona que mantiene su hogar es?, tipo de preparación que recibiste para postular al IESP, número de veces que postulaste a otros Institutos / Universidades, tipo de material de la vivienda, las variables identificadas influyen en el orden mencionado. Como trabajos futuros en el área de educación se propone profundizar el estudio utilizando nuevas fuentes de información, tales como información psicológica y/o historial médico de los estudiantes, para mejorar la toma de decisión.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-07T04:17:38Z
dc.date.available.none.fl_str_mv 2021-06-07T04:17:38Z
dc.date.issued.fl_str_mv 2021-03-04
dc.type.en_ES.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.upeu.edu.pe/handle/20.500.12840/4505
url http://repositorio.upeu.edu.pe/handle/20.500.12840/4505
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.en_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/es/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.format.en_ES.fl_str_mv application/pdf
dc.publisher.en_ES.fl_str_mv Universidad Peruana Unión
dc.publisher.country.en_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:UPEU-Tesis
instname:Universidad Peruana Unión
instacron:UPEU
instname_str Universidad Peruana Unión
instacron_str UPEU
institution UPEU
reponame_str UPEU-Tesis
collection UPEU-Tesis
bitstream.url.fl_str_mv https://repositorio.upeu.edu.pe/bitstreams/a8a10e8f-d48c-41c2-aa72-ffcc1c863940/download
https://repositorio.upeu.edu.pe/bitstreams/6f4b8122-b814-4c6e-8e07-425dbf9a532b/download
https://repositorio.upeu.edu.pe/bitstreams/3daecb09-3d6f-414a-baba-fd4c1181ff94/download
https://repositorio.upeu.edu.pe/bitstreams/1d602516-8f00-4b08-b4f7-875d31168c05/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
ff8658fc73ea29fe78987aa30fc51cfe
1d3d600e59e60f006f418df2f26885a4
78cde1f2ba98bd4bdb13f519b6caea13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv DSpace 7
repository.mail.fl_str_mv repositorio-help@upeu.edu.pe
_version_ 1835737916027961344
spelling Gómez Apaza, Roel DanteRojas Pari, Rudy Jhean2021-06-07T04:17:38Z2021-06-07T04:17:38Z2021-03-04http://repositorio.upeu.edu.pe/handle/20.500.12840/4505El presente estudio se llevó a cabo en el Instituto de Educación Superior Pedagógico Público Juliaca (IESPPJ), ubicado en el distrito de San Miguel de la Provincia de San Román, durante el año 2020, tuvo como objetivo general implementar un modelo de aprendizaje automático supervisado para identificar patrones de bajo rendimiento académico en los ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca, para su desarrollo de empleó la metodología de minería de datos denominado: CRISP-DM (Cross Industry Standard Process for Data Mining), el algoritmo Random Forest Classifier, dicho algoritmo fue entrenado con datos socioeconómicos, datos de admisión y datos académicos logrando un accuracy del 86%, permitiendo identificar las variables que más influyen en el rendimiento académico tales como: El promedio final del examen de admisión, edad, número de horas diarias que actualmente dedica al estudio, distrito en donde está ubicado el centro de estudios secundarios de procedencia, programa de estudios al que está postulando, número de dormitorios de su vivienda, cantidad de años en la que cursó la educación secundaria, idioma nativo que habla, ¿Cada cuánto tiempo recibes ayuda económica?, sexo, ¿La persona que mantiene su hogar es?, tipo de preparación que recibiste para postular al IESP, número de veces que postulaste a otros Institutos / Universidades, tipo de material de la vivienda, las variables identificadas influyen en el orden mencionado. Como trabajos futuros en el área de educación se propone profundizar el estudio utilizando nuevas fuentes de información, tales como información psicológica y/o historial médico de los estudiantes, para mejorar la toma de decisión.JULIACAEscuela Profesional de Ingeniería de SistemasIngeniería de Softwareapplication/pdfspaUniversidad Peruana UniónPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/es/Aprendizaje automático supervisadoBajo rendimiento académicoCRISP-DMData MiningRandom Forest Classifierhttp://purl.org/pe-repo/ocde/ford#2.02.04Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliacainfo:eu-repo/semantics/bachelorThesisreponame:UPEU-Tesisinstname:Universidad Peruana Unióninstacron:UPEUSUNEDUIngeniería de SistemasUniversidad Peruana Unión. Facultad de Ingeniería y ArquitecturaIngeniero de Sistemas40071297https://orcid.org/0000-0003-4500-692772672433612076Herrera Yucra, Benazir FrancisSullon Macalapu, Abel AngelCenturión Julca, Lennin HenryCondori Coaquira, Angel Rosendohttp://purl.org/pe-repo/renati/nivel#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upeu.edu.pe/bitstreams/a8a10e8f-d48c-41c2-aa72-ffcc1c863940/download8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upeu.edu.pe/bitstreams/6f4b8122-b814-4c6e-8e07-425dbf9a532b/downloadff8658fc73ea29fe78987aa30fc51cfeMD52THUMBNAILRudy_Tesis_Licenciatura_2021.pdf.jpgRudy_Tesis_Licenciatura_2021.pdf.jpgGenerated Thumbnailimage/jpeg3602https://repositorio.upeu.edu.pe/bitstreams/3daecb09-3d6f-414a-baba-fd4c1181ff94/download1d3d600e59e60f006f418df2f26885a4MD54ORIGINALRudy_Tesis_Licenciatura_2021.pdfRudy_Tesis_Licenciatura_2021.pdfapplication/pdf3392565https://repositorio.upeu.edu.pe/bitstreams/1d602516-8f00-4b08-b4f7-875d31168c05/download78cde1f2ba98bd4bdb13f519b6caea13MD5520.500.12840/4505oai:repositorio.upeu.edu.pe:20.500.12840/45052024-10-22 17:29:37.723http://creativecommons.org/licenses/by-nc-sa/3.0/es/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.upeu.edu.peDSpace 7repositorio-help@upeu.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.914502
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).