Modelo de aprendizaje automático para identificar operaciones inusuales de lavado de activos en una entidad financiera

Descripción del Articulo

Hoy en día, las entidades financieras se enfrentan a una lucha constante contra el lavado de activos y el financiamiento al terrorismo, es por ello que centran sus esfuerzos en la identificación de operaciones inusuales, utilizando las características que puedan evidenciar un comportamiento irregula...

Descripción completa

Detalles Bibliográficos
Autores: Flores Dueñas, Wari Ymber, Pari Salazar, Yumey Leslie
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/18340
Enlace del recurso:http://repositorio.unap.edu.pe/handle/20.500.14082/18340
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Lavado de activos y financiamiento al terrorismo
Operaciones inusuales
CRISP-DM
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Hoy en día, las entidades financieras se enfrentan a una lucha constante contra el lavado de activos y el financiamiento al terrorismo, es por ello que centran sus esfuerzos en la identificación de operaciones inusuales, utilizando las características que puedan evidenciar un comportamiento irregular al momento de realizar transacciones dentro de la entidad financiera, por ello que se crea un modelo que trabaje de forma conjunta para efectuar un análisis de los datos del cliente y con ello lograr la detección de posibles operaciones inusuales de lavado de activos, es necesario utilizar técnicas que nos permitan realizar un análisis exhaustivo y con precisión de grandes volúmenes de datos e información relevante y confiable. Para lograr este objetivo, se ha realizado un pre procesamiento de los datos y posteriormente se han aplicado algoritmos de aprendizaje automático que han surgido como una herramienta fundamental dentro del análisis y generación de conocimiento, dentro de ellos, se han utilizado los más representativos. Seguidamente, para realizar la aprobación del modelo se ha aplicado una validación cruzada de información y se obtuvo la métrica Acuracy, que es la precisión de cada modelo aplicado brinda, de esta manera, se ha obtenido una métrica que evalúa la precisión de cada uno de los modelos implementados. Finalmente, los resultados de los modelos propuestos han dado un 78.37% de precisión de confianza en el modelo. La entidad financiera deberá actualizar su información de riesgo, ya que debido a las vulnerabilidades que se exponen por diferentes delitos de LAFT, estas se incrementan de manera paulatina, es por ello que se debe mantener actualizado de los constantes delitos precedentes, para así alimentar la información del Modelo de Aprendizaje Automático.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).