Modelo de Aprendizaje Automático Supervisado para Identificar Patrones de Bajo Rendimiento Académico en los Ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca

Descripción del Articulo

El presente estudio se llevó a cabo en el Instituto de Educación Superior Pedagógico Público Juliaca (IESPPJ), ubicado en el distrito de San Miguel de la Provincia de San Román, durante el año 2020, tuvo como objetivo general implementar un modelo de aprendizaje automático supervisado para identific...

Descripción completa

Detalles Bibliográficos
Autor: Rojas Pari, Rudy Jhean
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/4505
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/4505
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático supervisado
Bajo rendimiento académico
CRISP-DM
Data Mining
Random Forest Classifier
http://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:El presente estudio se llevó a cabo en el Instituto de Educación Superior Pedagógico Público Juliaca (IESPPJ), ubicado en el distrito de San Miguel de la Provincia de San Román, durante el año 2020, tuvo como objetivo general implementar un modelo de aprendizaje automático supervisado para identificar patrones de bajo rendimiento académico en los ingresantes al Instituto de Educación Superior Pedagógico Público – Juliaca, para su desarrollo de empleó la metodología de minería de datos denominado: CRISP-DM (Cross Industry Standard Process for Data Mining), el algoritmo Random Forest Classifier, dicho algoritmo fue entrenado con datos socioeconómicos, datos de admisión y datos académicos logrando un accuracy del 86%, permitiendo identificar las variables que más influyen en el rendimiento académico tales como: El promedio final del examen de admisión, edad, número de horas diarias que actualmente dedica al estudio, distrito en donde está ubicado el centro de estudios secundarios de procedencia, programa de estudios al que está postulando, número de dormitorios de su vivienda, cantidad de años en la que cursó la educación secundaria, idioma nativo que habla, ¿Cada cuánto tiempo recibes ayuda económica?, sexo, ¿La persona que mantiene su hogar es?, tipo de preparación que recibiste para postular al IESP, número de veces que postulaste a otros Institutos / Universidades, tipo de material de la vivienda, las variables identificadas influyen en el orden mencionado. Como trabajos futuros en el área de educación se propone profundizar el estudio utilizando nuevas fuentes de información, tales como información psicológica y/o historial médico de los estudiantes, para mejorar la toma de decisión.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).