Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
Descripción del Articulo
Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2025 |
Institución: | Universidad Peruana Unión |
Repositorio: | UPEU-Tesis |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.upeu.edu.pe:20.500.12840/8559 |
Enlace del recurso: | http://repositorio.upeu.edu.pe/handle/20.500.12840/8559 |
Nivel de acceso: | acceso embargado |
Materia: | Neural network Modeling Artificial intelligence http://purl.org/pe-repo/ocde/ford#1.01.03 |
id |
UEPU_3f8e96f4eb121e14ea7db38e24292e43 |
---|---|
oai_identifier_str |
oai:repositorio.upeu.edu.pe:20.500.12840/8559 |
network_acronym_str |
UEPU |
network_name_str |
UPEU-Tesis |
repository_id_str |
4840 |
dc.title.none.fl_str_mv |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana |
title |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana |
spellingShingle |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana Solis Teran, Miguel Angel Neural network Modeling Artificial intelligence http://purl.org/pe-repo/ocde/ford#1.01.03 |
title_short |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana |
title_full |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana |
title_fullStr |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana |
title_full_unstemmed |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana |
title_sort |
Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana |
author |
Solis Teran, Miguel Angel |
author_facet |
Solis Teran, Miguel Angel |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
López Gonzales, Javier Linkolk |
dc.contributor.author.fl_str_mv |
Solis Teran, Miguel Angel |
dc.subject.none.fl_str_mv |
Neural network Modeling Artificial intelligence |
topic |
Neural network Modeling Artificial intelligence http://purl.org/pe-repo/ocde/ford#1.01.03 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.01.03 |
description |
Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the availablePM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. The Box-Jenkins models showed the best performance for short-term forecasting compared to the neural network models considered. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-03-14T13:58:13Z |
dc.date.available.none.fl_str_mv |
2025-03-14T13:58:13Z |
dc.date.embargoEnd.none.fl_str_mv |
2027-02-24 |
dc.date.issued.fl_str_mv |
2025-02-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.upeu.edu.pe/handle/20.500.12840/8559 |
url |
http://repositorio.upeu.edu.pe/handle/20.500.12840/8559 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Peruana Unión |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad Peruana Unión |
dc.source.none.fl_str_mv |
reponame:UPEU-Tesis instname:Universidad Peruana Unión instacron:UPEU |
instname_str |
Universidad Peruana Unión |
instacron_str |
UPEU |
institution |
UPEU |
reponame_str |
UPEU-Tesis |
collection |
UPEU-Tesis |
bitstream.url.fl_str_mv |
https://repositorio.upeu.edu.pe/bitstreams/2e75c4d6-4183-4010-a6ea-aaee96ba5cab/download https://repositorio.upeu.edu.pe/bitstreams/7dff8401-bfbb-44cd-b3e1-8a9ad97ffcdb/download https://repositorio.upeu.edu.pe/bitstreams/c35dc022-3001-4677-ad37-df7e962e49cc/download https://repositorio.upeu.edu.pe/bitstreams/667ca248-0f18-4a5e-8ce4-257ce5c394a9/download |
bitstream.checksum.fl_str_mv |
bb9bdc0b3349e4284e09149f943790b4 5caec518dc8744095aca6986c7e6107f 1ecb4765d71a85a64fca4094271c6102 660deb123daaecc3930a9270781170ec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace 7 |
repository.mail.fl_str_mv |
repositorio-help@upeu.edu.pe |
_version_ |
1835737570315599872 |
spelling |
López Gonzales, Javier LinkolkSolis Teran, Miguel Angel2025-03-14T13:58:13Z2025-03-14T13:58:13Z2025-02-242027-02-24http://repositorio.upeu.edu.pe/handle/20.500.12840/8559Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the availablePM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. The Box-Jenkins models showed the best performance for short-term forecasting compared to the neural network models considered.LimaEscuela Profesional de Ingeniería de SistemasInteligencia artificialapplication/pdfengUniversidad Peruana UniónPEinfo:eu-repo/semantics/embargoedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Neural networkModelingArtificial intelligencehttp://purl.org/pe-repo/ocde/ford#1.01.03Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitanainfo:eu-repo/semantics/bachelorThesisreponame:UPEU-Tesisinstname:Universidad Peruana Unióninstacron:UPEUSUNEDUIngeniería de SistemasUniversidad Peruana Unión. Facultad de Ingeniería y ArquitecturaIngeniero de Sistemas46071566https://orcid.org/0000-0003-0847-055270413580612076Cuellar Rodriguez, Immer EliasAsin Gomez, Fernando ManuelSaboyay Ríos, NemiasOrrego Granados, David LeandroLópez Gonzales, Javier Linkolkhttp://purl.org/pe-repo/renati/nivel#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upeu.edu.pe/bitstreams/2e75c4d6-4183-4010-a6ea-aaee96ba5cab/downloadbb9bdc0b3349e4284e09149f943790b4MD51ORIGINALMiguel_Tesis_Licenciatura_2025.pdfMiguel_Tesis_Licenciatura_2025.pdfapplication/pdf2490974https://repositorio.upeu.edu.pe/bitstreams/7dff8401-bfbb-44cd-b3e1-8a9ad97ffcdb/download5caec518dc8744095aca6986c7e6107fMD51Reporte de similitud.pdfReporte de similitud.pdfapplication/pdf985252https://repositorio.upeu.edu.pe/bitstreams/c35dc022-3001-4677-ad37-df7e962e49cc/download1ecb4765d71a85a64fca4094271c6102MD52Autorización.pdfAutorización.pdfapplication/pdf262084https://repositorio.upeu.edu.pe/bitstreams/667ca248-0f18-4a5e-8ce4-257ce5c394a9/download660deb123daaecc3930a9270781170ecMD5320.500.12840/8559oai:repositorio.upeu.edu.pe:20.500.12840/85592025-03-14 09:07:46.702http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessopen.accesshttps://repositorio.upeu.edu.peDSpace 7repositorio-help@upeu.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.971837 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).