Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana

Descripción del Articulo

Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru...

Descripción completa

Detalles Bibliográficos
Autor: Solis Teran, Miguel Angel
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:inglés
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/8559
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/8559
Nivel de acceso:acceso embargado
Materia:Neural network
Modeling
Artificial intelligence
http://purl.org/pe-repo/ocde/ford#1.01.03
id UEPU_3f8e96f4eb121e14ea7db38e24292e43
oai_identifier_str oai:repositorio.upeu.edu.pe:20.500.12840/8559
network_acronym_str UEPU
network_name_str UPEU-Tesis
repository_id_str 4840
dc.title.none.fl_str_mv Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
title Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
spellingShingle Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
Solis Teran, Miguel Angel
Neural network
Modeling
Artificial intelligence
http://purl.org/pe-repo/ocde/ford#1.01.03
title_short Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
title_full Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
title_fullStr Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
title_full_unstemmed Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
title_sort Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana
author Solis Teran, Miguel Angel
author_facet Solis Teran, Miguel Angel
author_role author
dc.contributor.advisor.fl_str_mv López Gonzales, Javier Linkolk
dc.contributor.author.fl_str_mv Solis Teran, Miguel Angel
dc.subject.none.fl_str_mv Neural network
Modeling
Artificial intelligence
topic Neural network
Modeling
Artificial intelligence
http://purl.org/pe-repo/ocde/ford#1.01.03
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.01.03
description Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the availablePM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. The Box-Jenkins models showed the best performance for short-term forecasting compared to the neural network models considered.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-03-14T13:58:13Z
dc.date.available.none.fl_str_mv 2025-03-14T13:58:13Z
dc.date.embargoEnd.none.fl_str_mv 2027-02-24
dc.date.issued.fl_str_mv 2025-02-24
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://repositorio.upeu.edu.pe/handle/20.500.12840/8559
url http://repositorio.upeu.edu.pe/handle/20.500.12840/8559
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Peruana Unión
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad Peruana Unión
dc.source.none.fl_str_mv reponame:UPEU-Tesis
instname:Universidad Peruana Unión
instacron:UPEU
instname_str Universidad Peruana Unión
instacron_str UPEU
institution UPEU
reponame_str UPEU-Tesis
collection UPEU-Tesis
bitstream.url.fl_str_mv https://repositorio.upeu.edu.pe/bitstreams/2e75c4d6-4183-4010-a6ea-aaee96ba5cab/download
https://repositorio.upeu.edu.pe/bitstreams/7dff8401-bfbb-44cd-b3e1-8a9ad97ffcdb/download
https://repositorio.upeu.edu.pe/bitstreams/c35dc022-3001-4677-ad37-df7e962e49cc/download
https://repositorio.upeu.edu.pe/bitstreams/667ca248-0f18-4a5e-8ce4-257ce5c394a9/download
bitstream.checksum.fl_str_mv bb9bdc0b3349e4284e09149f943790b4
5caec518dc8744095aca6986c7e6107f
1ecb4765d71a85a64fca4094271c6102
660deb123daaecc3930a9270781170ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv DSpace 7
repository.mail.fl_str_mv repositorio-help@upeu.edu.pe
_version_ 1835737570315599872
spelling López Gonzales, Javier LinkolkSolis Teran, Miguel Angel2025-03-14T13:58:13Z2025-03-14T13:58:13Z2025-02-242027-02-24http://repositorio.upeu.edu.pe/handle/20.500.12840/8559Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the availablePM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. The Box-Jenkins models showed the best performance for short-term forecasting compared to the neural network models considered.LimaEscuela Profesional de Ingeniería de SistemasInteligencia artificialapplication/pdfengUniversidad Peruana UniónPEinfo:eu-repo/semantics/embargoedAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Neural networkModelingArtificial intelligencehttp://purl.org/pe-repo/ocde/ford#1.01.03Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitanainfo:eu-repo/semantics/bachelorThesisreponame:UPEU-Tesisinstname:Universidad Peruana Unióninstacron:UPEUSUNEDUIngeniería de SistemasUniversidad Peruana Unión. Facultad de Ingeniería y ArquitecturaIngeniero de Sistemas46071566https://orcid.org/0000-0003-0847-055270413580612076Cuellar Rodriguez, Immer EliasAsin Gomez, Fernando ManuelSaboyay Ríos, NemiasOrrego Granados, David LeandroLópez Gonzales, Javier Linkolkhttp://purl.org/pe-repo/renati/nivel#tituloProfesionalhttp://purl.org/pe-repo/renati/type#tesisLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upeu.edu.pe/bitstreams/2e75c4d6-4183-4010-a6ea-aaee96ba5cab/downloadbb9bdc0b3349e4284e09149f943790b4MD51ORIGINALMiguel_Tesis_Licenciatura_2025.pdfMiguel_Tesis_Licenciatura_2025.pdfapplication/pdf2490974https://repositorio.upeu.edu.pe/bitstreams/7dff8401-bfbb-44cd-b3e1-8a9ad97ffcdb/download5caec518dc8744095aca6986c7e6107fMD51Reporte de similitud.pdfReporte de similitud.pdfapplication/pdf985252https://repositorio.upeu.edu.pe/bitstreams/c35dc022-3001-4677-ad37-df7e962e49cc/download1ecb4765d71a85a64fca4094271c6102MD52Autorización.pdfAutorización.pdfapplication/pdf262084https://repositorio.upeu.edu.pe/bitstreams/667ca248-0f18-4a5e-8ce4-257ce5c394a9/download660deb123daaecc3930a9270781170ecMD5320.500.12840/8559oai:repositorio.upeu.edu.pe:20.500.12840/85592025-03-14 09:07:46.702http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccessopen.accesshttps://repositorio.upeu.edu.peDSpace 7repositorio-help@upeu.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).