Modelado basado en redes neuronales artificiales: Memoria de largo-corto plazo para la contaminación en Lima Metropolitana

Descripción del Articulo

Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru...

Descripción completa

Detalles Bibliográficos
Autor: Solis Teran, Miguel Angel
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad Peruana Unión
Repositorio:UPEU-Tesis
Lenguaje:inglés
OAI Identifier:oai:repositorio.upeu.edu.pe:20.500.12840/8559
Enlace del recurso:http://repositorio.upeu.edu.pe/handle/20.500.12840/8559
Nivel de acceso:acceso embargado
Materia:Neural network
Modeling
Artificial intelligence
http://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:Particulate matter (PM) is a mixture of fine dust and tiny droplets of liquid suspended in the air. PM10 are pollutant particles with a diameter of less than 10 micrometers. These particles are harmful to the respiratory system. The air quality in the region and capital Lima in the Republic of Peru has been investigated in recent years. In this context, statistical analyses of PM10 data with forecast models can contribute to planning actions that can improve air quality. The objective of this work is to perform a statistical analysis of the availablePM10 data and evaluate the quality of time series classical models and neural networks for short-term forecasting. The Box-Jenkins models showed the best performance for short-term forecasting compared to the neural network models considered.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).