Detección automática y análisis de puntos con alta frecuencia (hotspots) de crímenes en centros urbanos usando aprendizaje profundo
Descripción del Articulo
A medida que los datos urbanos provenientes de ciudades crecen, se requieren nuevas formas de procesamiento y visualización, tanto para poder tratarlos como para obtener información útil y fácilmente interpretable, por lo que este trabajo presenta una metodología de procesamiento de datos orientado...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/18541 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/18541 |
| Nivel de acceso: | acceso abierto |
| Materia: | Aprendizaje profundo Ingeniería de datos Red neuronal basada en grafos Predicción del crimen Predicción espacio-temporal Edge-node https://purl.org/pe-repo/ocde/ford#1.02.01 |
| Sumario: | A medida que los datos urbanos provenientes de ciudades crecen, se requieren nuevas formas de procesamiento y visualización, tanto para poder tratarlos como para obtener información útil y fácilmente interpretable, por lo que este trabajo presenta una metodología de procesamiento de datos orientado a la detección temprana de crimen. Abarcaremos tanto la recopilación de datos de centros urbanos mediante el uso de bases de datos y APIs de acceso público, la discretización de datos espaciales que permite una interpretación a nivel de calle de un centro poblado, como la implementación de un modelo predictivo que utiliza información espacio-temporal para dar una estimación de áreas propensas a un incidente delictivo con precisión aceptable. Se utilizar aprendizaje profundo como redes recurrentes y redes convoluciones, así como redes basadas en grafos. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).