An adversarial model for paraphrase generation

Descripción del Articulo

Paraphrasing is the action of expressing the idea of a sentence using different words. Paraphrase generation is an interesting and challenging task due mainly to three reasons: (1) The nature of the text is discrete, (2) it is difficult to modify a sentence slightly without changing the meaning, and...

Descripción completa

Detalles Bibliográficos
Autor: Vizcarra Aguilar, Gerson Waldyr
Formato: tesis de maestría
Fecha de Publicación:2020
Institución:Universidad Católica San Pablo
Repositorio:UCSP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ucsp.edu.pe:20.500.12590/16901
Enlace del recurso:https://hdl.handle.net/20.500.12590/16901
Nivel de acceso:acceso abierto
Materia:Paraphrase generation
Input representations
Convolutional sequence to sequence
Adversarial training
https://purl.org/pe-repo/ocde/ford#1.02.01
id UCSP_01660b6a55cb53442c424c9b2077505c
oai_identifier_str oai:repositorio.ucsp.edu.pe:20.500.12590/16901
network_acronym_str UCSP
network_name_str UCSP-Institucional
repository_id_str 3854
dc.title.es_PE.fl_str_mv An adversarial model for paraphrase generation
title An adversarial model for paraphrase generation
spellingShingle An adversarial model for paraphrase generation
Vizcarra Aguilar, Gerson Waldyr
Paraphrase generation
Input representations
Convolutional sequence to sequence
Adversarial training
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short An adversarial model for paraphrase generation
title_full An adversarial model for paraphrase generation
title_fullStr An adversarial model for paraphrase generation
title_full_unstemmed An adversarial model for paraphrase generation
title_sort An adversarial model for paraphrase generation
author Vizcarra Aguilar, Gerson Waldyr
author_facet Vizcarra Aguilar, Gerson Waldyr
author_role author
dc.contributor.advisor.fl_str_mv Ochoa Luna, Jose Eduardo
dc.contributor.author.fl_str_mv Vizcarra Aguilar, Gerson Waldyr
dc.subject.es_PE.fl_str_mv Paraphrase generation
Input representations
Convolutional sequence to sequence
Adversarial training
topic Paraphrase generation
Input representations
Convolutional sequence to sequence
Adversarial training
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Paraphrasing is the action of expressing the idea of a sentence using different words. Paraphrase generation is an interesting and challenging task due mainly to three reasons: (1) The nature of the text is discrete, (2) it is difficult to modify a sentence slightly without changing the meaning, and (3) there are no accurate automatic metrics to evaluate the quality of a paraphrase. This problem has been addressed with several methods. Even so, neural network-based approaches have been tackling this task recently. This thesis presents a novel framework to solve the paraphrase generation problem in English. To do so, this work focuses and evaluates three aspects of a model, as the teaser figure shows. (a) Static input representations extracted from pre-trained language models. (b) Convolutional sequence to sequence models as our main architecture. (c) Hybrid loss function between maximum likelihood and adversarial REINFORCE, avoiding the computationally expensive Monte-Carlo search. We compare our best models with some baselines in the Quora question pairs dataset. The results show that our framework is competitive against the previous benchmarks.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-11-02T16:39:39Z
dc.date.available.none.fl_str_mv 2021-11-02T16:39:39Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.other.none.fl_str_mv 1073514
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12590/16901
identifier_str_mv 1073514
url https://hdl.handle.net/20.500.12590/16901
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad Católica San Pablo
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad Católica San Pablo
Repositorio Institucional - UCSP
dc.source.none.fl_str_mv reponame:UCSP-Institucional
instname:Universidad Católica San Pablo
instacron:UCSP
instname_str Universidad Católica San Pablo
instacron_str UCSP
institution UCSP
reponame_str UCSP-Institucional
collection UCSP-Institucional
bitstream.url.fl_str_mv https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9dc747bc-9246-4cee-812e-b5bed5015039/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7a1e50b2-51e6-4a16-8bca-dc85305e1d80/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a6820101-a81a-429a-a45e-00f221e82134/download
https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d837908b-2fb0-4ce0-85f5-4bf119a9b8b4/download
bitstream.checksum.fl_str_mv fa75f59a2bbd42548600148ba92a411f
8a4605be74aa9ea9d79846c1fba20a33
b6f570ff210e94962802bd61dad62f0a
0955a2bfc93c21e48d529ce4db9659fa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica San Pablo
repository.mail.fl_str_mv dspace@ucsp.edu.pe
_version_ 1851053042156175360
spelling Ochoa Luna, Jose EduardoVizcarra Aguilar, Gerson Waldyr2021-11-02T16:39:39Z2021-11-02T16:39:39Z20201073514https://hdl.handle.net/20.500.12590/16901Paraphrasing is the action of expressing the idea of a sentence using different words. Paraphrase generation is an interesting and challenging task due mainly to three reasons: (1) The nature of the text is discrete, (2) it is difficult to modify a sentence slightly without changing the meaning, and (3) there are no accurate automatic metrics to evaluate the quality of a paraphrase. This problem has been addressed with several methods. Even so, neural network-based approaches have been tackling this task recently. This thesis presents a novel framework to solve the paraphrase generation problem in English. To do so, this work focuses and evaluates three aspects of a model, as the teaser figure shows. (a) Static input representations extracted from pre-trained language models. (b) Convolutional sequence to sequence models as our main architecture. (c) Hybrid loss function between maximum likelihood and adversarial REINFORCE, avoiding the computationally expensive Monte-Carlo search. We compare our best models with some baselines in the Quora question pairs dataset. The results show that our framework is competitive against the previous benchmarks. Tesisapplication/pdfengUniversidad Católica San PabloPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Universidad Católica San PabloRepositorio Institucional - UCSPreponame:UCSP-Institucionalinstname:Universidad Católica San Pabloinstacron:UCSPParaphrase generationInput representationsConvolutional sequence to sequenceAdversarial traininghttps://purl.org/pe-repo/ocde/ford#1.02.01An adversarial model for paraphrase generationinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionSUNEDUMaestro en Ciencia de la ComputaciónUniversidad Católica San Pablo. Departamento de Ciencia de la ComputaciónMaestríaCiencia de la ComputaciónPrograma Profesional de Ciencia de la Computación70001862https://orcid.org/0000-0002-8979-378529738760https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/level#maestro611017Alex Jesús Cuadros VargasEraldo Luíz Rezende FernandesCamilo Thorne FreundtHugo Alatrista SalasORIGINALVIZCARRA_AGUILAR_GER_ADV.pdfVIZCARRA_AGUILAR_GER_ADV.pdfapplication/pdf2278277https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/9dc747bc-9246-4cee-812e-b5bed5015039/downloadfa75f59a2bbd42548600148ba92a411fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/7a1e50b2-51e6-4a16-8bca-dc85305e1d80/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTVIZCARRA_AGUILAR_GER_ADV.pdf.txtVIZCARRA_AGUILAR_GER_ADV.pdf.txtExtracted texttext/plain157762https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/a6820101-a81a-429a-a45e-00f221e82134/downloadb6f570ff210e94962802bd61dad62f0aMD53THUMBNAILVIZCARRA_AGUILAR_GER_ADV.pdf.jpgVIZCARRA_AGUILAR_GER_ADV.pdf.jpgGenerated Thumbnailimage/jpeg4032https://repositorio.ucsp.edu.pe/backend/api/core/bitstreams/d837908b-2fb0-4ce0-85f5-4bf119a9b8b4/download0955a2bfc93c21e48d529ce4db9659faMD5420.500.12590/16901oai:repositorio.ucsp.edu.pe:20.500.12590/169012023-10-31 14:36:23.534https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.ucsp.edu.peRepositorio Institucional de la Universidad Católica San Pablodspace@ucsp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.455904
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).