An adversarial model for paraphrase generation
Descripción del Articulo
Paraphrasing is the action of expressing the idea of a sentence using different words. Paraphrase generation is an interesting and challenging task due mainly to three reasons: (1) The nature of the text is discrete, (2) it is difficult to modify a sentence slightly without changing the meaning, and...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Católica San Pablo |
| Repositorio: | UCSP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ucsp.edu.pe:20.500.12590/16901 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12590/16901 |
| Nivel de acceso: | acceso abierto |
| Materia: | Paraphrase generation Input representations Convolutional sequence to sequence Adversarial training https://purl.org/pe-repo/ocde/ford#1.02.01 |
| Sumario: | Paraphrasing is the action of expressing the idea of a sentence using different words. Paraphrase generation is an interesting and challenging task due mainly to three reasons: (1) The nature of the text is discrete, (2) it is difficult to modify a sentence slightly without changing the meaning, and (3) there are no accurate automatic metrics to evaluate the quality of a paraphrase. This problem has been addressed with several methods. Even so, neural network-based approaches have been tackling this task recently. This thesis presents a novel framework to solve the paraphrase generation problem in English. To do so, this work focuses and evaluates three aspects of a model, as the teaser figure shows. (a) Static input representations extracted from pre-trained language models. (b) Convolutional sequence to sequence models as our main architecture. (c) Hybrid loss function between maximum likelihood and adversarial REINFORCE, avoiding the computationally expensive Monte-Carlo search. We compare our best models with some baselines in the Quora question pairs dataset. The results show that our framework is competitive against the previous benchmarks. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).