Predicción de estado de carga de baterías para sistemas fotovoltaicos en el sector minero utilizando técnicas de aprendizaje automático supervisado

Descripción del Articulo

En el presente trabajo de investigación propuesto tiene como objetivo la predicción del Estado de Carga de Baterías de equipos energizados por paneles solares en sector minero, mediante técnicas de aprendizaje supervisado automático. Se cuenta con un sistema de monitoreo que registra cada variable d...

Descripción completa

Detalles Bibliográficos
Autor: Apaza Pinto, Alexa Xiomara
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Católica de Santa María
Repositorio:UCSM-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.ucsm.edu.pe:20.500.12920/11238
Enlace del recurso:https://repositorio.ucsm.edu.pe/handle/20.500.12920/11238
Nivel de acceso:acceso abierto
Materia:Predicción
Sistemas Fotovoltaicos
Aprendizaje Automático
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:En el presente trabajo de investigación propuesto tiene como objetivo la predicción del Estado de Carga de Baterías de equipos energizados por paneles solares en sector minero, mediante técnicas de aprendizaje supervisado automático. Se cuenta con un sistema de monitoreo que registra cada variable de energía programado en el sistema fotovoltaico, por el cual se realizó un análisis de los datos extraídos del sistema de monitoreo. Los datos fueron evaluados mediante técnicas de aprendizaje supervisado automático por medio de la herramienta RapidMiner cuyo promedio de predicción fue un 90.12 %. Se eligió la técnica de aprendizaje supervisado automático más adecuada para la predicción del estado de carga de las baterías para sistemas fotovoltaicos, cuya técnica elegida fue desarrollada utilizando la librería Tensorflow y el lenguaje de programación Python. Se hizo un análisis y discusión de los resultados del entrenamiento del modelo que finalmente con el modelo correctamente entrenado se procedió a realizar una validación que conllevo a la comparación de los datos predictivos con los datos en tiempo real obteniendo una buena relación y resultados satisfactorios.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).