Sistema Para la Predicción de Obesidad en la Adolescencia Utilizando Técnicas de Minería de Datos

Descripción del Articulo

El proyecto consiste en analizar, diseñar e implementar un software que utilice un modelo de minería de datos, hecho en base a información recolectada de diversos colegios en el Perú, el software utiliza un algoritmo de árboles de decisión para predecir un posible resultado, de acuerdo a los datos o...

Descripción completa

Detalles Bibliográficos
Autor: Ticona Sucari, Marco Antonio
Formato: tesis de grado
Fecha de Publicación:2018
Institución:Universidad Católica de Santa María
Repositorio:UCSM-Tesis
Lenguaje:español
OAI Identifier:oai:repositorio.ucsm.edu.pe:20.500.12920/8305
Enlace del recurso:https://repositorio.ucsm.edu.pe/handle/20.500.12920/8305
Nivel de acceso:acceso abierto
Materia:Aprendizaje Automático
Inteligencia Artificial
Minería de datos
Obesidad
Predicción
Descripción
Sumario:El proyecto consiste en analizar, diseñar e implementar un software que utilice un modelo de minería de datos, hecho en base a información recolectada de diversos colegios en el Perú, el software utiliza un algoritmo de árboles de decisión para predecir un posible resultado, de acuerdo a los datos o atributos que deben ser ingresados por el usuario (adolescente). Para la construcción del modelo de minería de datos se utilizó el Proceso de Descubrimiento de Conocimiento en Bases de Datos, se realizó detenidamente la fase de análisis y selección del algoritmo para deducir los patrones y tendencias que existen entre los datos. Los algoritmos evaluados fueron J48, BayestNet, Multilayer Perceptron, ForestPA y NaiveBayes, obteniendo como mejor el algoritmo J48, con un porcentaje de precisión de 94.39%, y demostrando ser superior en otros indicadores. El algoritmo obtenido de las pruebas y comparaciones realizadas, fue implementado en una herramienta de software, con el objetivo de automatizar el proceso y evaluar a más personas para futuras investigaciones. Palabras Clave Aprendizaje Automático, Inteligencia Artificial, Minería de datos, Obesidad, Predicción.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).