Prediction of Peruvian Companies' Stock Prices Using Machine Learning
Descripción del Articulo
Nowadays, the challenges that covid-19 has generated to the financial community that operates within the stock market has generated a greater uncertainty in the profitability and consequently has made this practice more difficult. To overcome that problem the present study aims to develop a model th...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/21096 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/21096 |
Nivel de acceso: | acceso abierto |
Materia: | Acciones (Valores) Empresas Algoritmos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
RULI_a34d34e54cd3eba18e7249f377ce45ca |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/21096 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning |
title |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning |
spellingShingle |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning Espiritu Pera, Jose Antonio Acciones (Valores) Empresas Algoritmos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning |
title_full |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning |
title_fullStr |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning |
title_full_unstemmed |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning |
title_sort |
Prediction of Peruvian Companies' Stock Prices Using Machine Learning |
author |
Espiritu Pera, Jose Antonio |
author_facet |
Espiritu Pera, Jose Antonio Ibañez Diaz, Alexis Oneil |
author_role |
author |
author2 |
Ibañez Diaz, Alexis Oneil |
author2_role |
author |
dc.contributor.advisor.fl_str_mv |
Taquía Gutiérrez, José Antonio |
dc.contributor.author.fl_str_mv |
Espiritu Pera, Jose Antonio Ibañez Diaz, Alexis Oneil |
dc.subject.es_PE.fl_str_mv |
Acciones (Valores) Empresas Algoritmos Aprendizaje automático |
topic |
Acciones (Valores) Empresas Algoritmos Aprendizaje automático https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
Nowadays, the challenges that covid-19 has generated to the financial community that operates within the stock market has generated a greater uncertainty in the profitability and consequently has made this practice more difficult. To overcome that problem the present study aims to develop a model that facilitates this work; this model uses the SVR regression algorithm and through technical indicators provide us with the possible trend that the stock may take in the future and thus suggest that the investor in question buys, sells or holds the stock in view of that result. As a result of the project, it was proposed to use 7 technical indicators RSI, MACD, ROC, WMA, OBV, the Williams indicator and the stochastic oscillator that determine the current market condition. After validating the model, it was concluded that there are different Peruvian companies that have been able to overcome the difficulties of the pandemic with enough growth potential during this post-covid period. Our main research question: Is it feasible to predict stocks in Peruvian companies with growth potential during the Covid-19 pandemic, using the Support Vector Regression (SVR) algorithm as Machine Learning in the Lima Stock Exchange (BVL)? |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-26T12:42:34Z |
dc.date.available.none.fl_str_mv |
2024-08-26T12:42:34Z |
dc.date.issued.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.other.none.fl_str_mv |
Tesis |
format |
bachelorThesis |
dc.identifier.citation.es_PE.fl_str_mv |
Espiritu Pera, J. A. & Ibañez Diaz A. O. (2024). Prediction of Peruvian Companies' Stock Prices Using Machine Learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21096 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/21096 |
dc.identifier.isni.none.fl_str_mv |
121541816 |
identifier_str_mv |
Espiritu Pera, J. A. & Ibañez Diaz A. O. (2024). Prediction of Peruvian Companies' Stock Prices Using Machine Learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21096 121541816 |
url |
https://hdl.handle.net/20.500.12724/21096 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/1/T018_73176828_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/2/FA_73176828_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/3/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/4/T018_73176828_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/6/FA_73176828_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/8/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/5/T018_73176828_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/7/FA_73176828_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/9/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.jpg |
bitstream.checksum.fl_str_mv |
464ce21b7d7a7a2e55d02983e81dc763 bdea351aaf128ca24ffb6360e9784e12 6f932e942b8a9738da5ee060b215a82e a2b32e4a23747d3dec39ccd572ef52cb e034fb2ad1dffd69d83da5f005c7c111 cff7937a99ee7a5cfe34405e655352d6 5df598937fbca8f042c5d6768df161fa 6599f3395e0a770472641f7d2c00d663 a348ca9462e2ade40193ee60bc384ee0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1840271182701527040 |
spelling |
Taquía Gutiérrez, José AntonioEspiritu Pera, Jose AntonioIbañez Diaz, Alexis Oneil2024-08-26T12:42:34Z2024-08-26T12:42:34Z2024Espiritu Pera, J. A. & Ibañez Diaz A. O. (2024). Prediction of Peruvian Companies' Stock Prices Using Machine Learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21096https://hdl.handle.net/20.500.12724/21096121541816Nowadays, the challenges that covid-19 has generated to the financial community that operates within the stock market has generated a greater uncertainty in the profitability and consequently has made this practice more difficult. To overcome that problem the present study aims to develop a model that facilitates this work; this model uses the SVR regression algorithm and through technical indicators provide us with the possible trend that the stock may take in the future and thus suggest that the investor in question buys, sells or holds the stock in view of that result. As a result of the project, it was proposed to use 7 technical indicators RSI, MACD, ROC, WMA, OBV, the Williams indicator and the stochastic oscillator that determine the current market condition. After validating the model, it was concluded that there are different Peruvian companies that have been able to overcome the difficulties of the pandemic with enough growth potential during this post-covid period. Our main research question: Is it feasible to predict stocks in Peruvian companies with growth potential during the Covid-19 pandemic, using the Support Vector Regression (SVR) algorithm as Machine Learning in the Lima Stock Exchange (BVL)?En la actualidad los retos que el covid-19 ha generado a la comunidad financiera que opera dentro del mercado de valores ha generado una mayor incertidumbre en la rentabilidad y por consiguiente ha dificultado esta práctica. Para superar ese problema el presente estudio tiene como objetivo desarrollar un modelo que facilite esta labor; este modelo utiliza el algoritmo de regresión SVR y a través de indicadores técnicos nos proporciona la posible tendencia que puede tomar la acción en el futuro y así sugerir que el inversionista en cuestión compre, venda o mantenga la acción en vista de ese resultado. Como resultado del proyecto, se propuso utilizar 7 indicadores técnicos RSI, MACD, ROC, WMA, OBV, el indicador Williams y el oscilador estocástico que determinan el estado actual del mercado. Luego de validar el modelo, se concluyó que existen diferentes empresas peruanas que han podido superar las dificultades de la pandemia con suficiente potencial de crecimiento durante este periodo post-covid. Nuestra principal pregunta de investigación: ¿Es factible predecir acciones de empresas peruanas con potencial de crecimiento durante la pandemia del Covid-19, utilizando el algoritmo de Regresión por Vectores de Soporte (SVR) como Machine Learning en la Bolsa de Valores de Lima (BVL)?application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAcciones (Valores)EmpresasAlgoritmosAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#2.11.04Prediction of Peruvian Companies' Stock Prices Using Machine Learninginfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0002-1711-6603103002857220547317682870667725https://purl.org/pe-repo/renati/level#tituloProfesionalPendientehttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_73176828_T.pdfT018_73176828_T.pdfTesisapplication/pdf241966https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/1/T018_73176828_T.pdf464ce21b7d7a7a2e55d02983e81dc763MD51FA_73176828_SR.pdfFA_73176828_SR.pdfAutorizaciónapplication/pdf222978https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/2/FA_73176828_SR.pdfbdea351aaf128ca24ffb6360e9784e12MD52TURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdfTURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdfReporte de similitudapplication/pdf2184868https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/3/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf6f932e942b8a9738da5ee060b215a82eMD53TEXTT018_73176828_T.pdf.txtT018_73176828_T.pdf.txtExtracted texttext/plain14763https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/4/T018_73176828_T.pdf.txta2b32e4a23747d3dec39ccd572ef52cbMD54FA_73176828_SR.pdf.txtFA_73176828_SR.pdf.txtExtracted texttext/plain2591https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/6/FA_73176828_SR.pdf.txte034fb2ad1dffd69d83da5f005c7c111MD56TURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.txtTURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.txtExtracted texttext/plain538https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/8/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.txtcff7937a99ee7a5cfe34405e655352d6MD58THUMBNAILT018_73176828_T.pdf.jpgT018_73176828_T.pdf.jpgGenerated Thumbnailimage/jpeg10200https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/5/T018_73176828_T.pdf.jpg5df598937fbca8f042c5d6768df161faMD55FA_73176828_SR.pdf.jpgFA_73176828_SR.pdf.jpgGenerated Thumbnailimage/jpeg16346https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/7/FA_73176828_SR.pdf.jpg6599f3395e0a770472641f7d2c00d663MD57TURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.jpgTURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.jpgGenerated Thumbnailimage/jpeg7767https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/9/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.jpga348ca9462e2ade40193ee60bc384ee0MD5920.500.12724/21096oai:repositorio.ulima.edu.pe:20.500.12724/210962025-07-14 16:43:57.953Repositorio Universidad de Limarepositorio@ulima.edu.pe |
score |
13.243791 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).