Prediction of Peruvian Companies' Stock Prices Using Machine Learning

Descripción del Articulo

Nowadays, the challenges that covid-19 has generated to the financial community that operates within the stock market has generated a greater uncertainty in the profitability and consequently has made this practice more difficult. To overcome that problem the present study aims to develop a model th...

Descripción completa

Detalles Bibliográficos
Autores: Espiritu Pera, Jose Antonio, Ibañez Diaz, Alexis Oneil
Formato: tesis de grado
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/21096
Enlace del recurso:https://hdl.handle.net/20.500.12724/21096
Nivel de acceso:acceso abierto
Materia:Acciones (Valores)
Empresas
Algoritmos
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_a34d34e54cd3eba18e7249f377ce45ca
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/21096
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Prediction of Peruvian Companies' Stock Prices Using Machine Learning
title Prediction of Peruvian Companies' Stock Prices Using Machine Learning
spellingShingle Prediction of Peruvian Companies' Stock Prices Using Machine Learning
Espiritu Pera, Jose Antonio
Acciones (Valores)
Empresas
Algoritmos
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Prediction of Peruvian Companies' Stock Prices Using Machine Learning
title_full Prediction of Peruvian Companies' Stock Prices Using Machine Learning
title_fullStr Prediction of Peruvian Companies' Stock Prices Using Machine Learning
title_full_unstemmed Prediction of Peruvian Companies' Stock Prices Using Machine Learning
title_sort Prediction of Peruvian Companies' Stock Prices Using Machine Learning
author Espiritu Pera, Jose Antonio
author_facet Espiritu Pera, Jose Antonio
Ibañez Diaz, Alexis Oneil
author_role author
author2 Ibañez Diaz, Alexis Oneil
author2_role author
dc.contributor.advisor.fl_str_mv Taquía Gutiérrez, José Antonio
dc.contributor.author.fl_str_mv Espiritu Pera, Jose Antonio
Ibañez Diaz, Alexis Oneil
dc.subject.es_PE.fl_str_mv Acciones (Valores)
Empresas
Algoritmos
Aprendizaje automático
topic Acciones (Valores)
Empresas
Algoritmos
Aprendizaje automático
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description Nowadays, the challenges that covid-19 has generated to the financial community that operates within the stock market has generated a greater uncertainty in the profitability and consequently has made this practice more difficult. To overcome that problem the present study aims to develop a model that facilitates this work; this model uses the SVR regression algorithm and through technical indicators provide us with the possible trend that the stock may take in the future and thus suggest that the investor in question buys, sells or holds the stock in view of that result. As a result of the project, it was proposed to use 7 technical indicators RSI, MACD, ROC, WMA, OBV, the Williams indicator and the stochastic oscillator that determine the current market condition. After validating the model, it was concluded that there are different Peruvian companies that have been able to overcome the difficulties of the pandemic with enough growth potential during this post-covid period. Our main research question: Is it feasible to predict stocks in Peruvian companies with growth potential during the Covid-19 pandemic, using the Support Vector Regression (SVR) algorithm as Machine Learning in the Lima Stock Exchange (BVL)?
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-26T12:42:34Z
dc.date.available.none.fl_str_mv 2024-08-26T12:42:34Z
dc.date.issued.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Espiritu Pera, J. A. & Ibañez Diaz A. O. (2024). Prediction of Peruvian Companies' Stock Prices Using Machine Learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21096
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/21096
dc.identifier.isni.none.fl_str_mv 121541816
identifier_str_mv Espiritu Pera, J. A. & Ibañez Diaz A. O. (2024). Prediction of Peruvian Companies' Stock Prices Using Machine Learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21096
121541816
url https://hdl.handle.net/20.500.12724/21096
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/1/T018_73176828_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/2/FA_73176828_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/3/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/4/T018_73176828_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/6/FA_73176828_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/8/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/5/T018_73176828_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/7/FA_73176828_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/9/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.jpg
bitstream.checksum.fl_str_mv 464ce21b7d7a7a2e55d02983e81dc763
bdea351aaf128ca24ffb6360e9784e12
6f932e942b8a9738da5ee060b215a82e
a2b32e4a23747d3dec39ccd572ef52cb
e034fb2ad1dffd69d83da5f005c7c111
cff7937a99ee7a5cfe34405e655352d6
5df598937fbca8f042c5d6768df161fa
6599f3395e0a770472641f7d2c00d663
a348ca9462e2ade40193ee60bc384ee0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1840271182701527040
spelling Taquía Gutiérrez, José AntonioEspiritu Pera, Jose AntonioIbañez Diaz, Alexis Oneil2024-08-26T12:42:34Z2024-08-26T12:42:34Z2024Espiritu Pera, J. A. & Ibañez Diaz A. O. (2024). Prediction of Peruvian Companies' Stock Prices Using Machine Learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21096https://hdl.handle.net/20.500.12724/21096121541816Nowadays, the challenges that covid-19 has generated to the financial community that operates within the stock market has generated a greater uncertainty in the profitability and consequently has made this practice more difficult. To overcome that problem the present study aims to develop a model that facilitates this work; this model uses the SVR regression algorithm and through technical indicators provide us with the possible trend that the stock may take in the future and thus suggest that the investor in question buys, sells or holds the stock in view of that result. As a result of the project, it was proposed to use 7 technical indicators RSI, MACD, ROC, WMA, OBV, the Williams indicator and the stochastic oscillator that determine the current market condition. After validating the model, it was concluded that there are different Peruvian companies that have been able to overcome the difficulties of the pandemic with enough growth potential during this post-covid period. Our main research question: Is it feasible to predict stocks in Peruvian companies with growth potential during the Covid-19 pandemic, using the Support Vector Regression (SVR) algorithm as Machine Learning in the Lima Stock Exchange (BVL)?En la actualidad los retos que el covid-19 ha generado a la comunidad financiera que opera dentro del mercado de valores ha generado una mayor incertidumbre en la rentabilidad y por consiguiente ha dificultado esta práctica. Para superar ese problema el presente estudio tiene como objetivo desarrollar un modelo que facilite esta labor; este modelo utiliza el algoritmo de regresión SVR y a través de indicadores técnicos nos proporciona la posible tendencia que puede tomar la acción en el futuro y así sugerir que el inversionista en cuestión compre, venda o mantenga la acción en vista de ese resultado. Como resultado del proyecto, se propuso utilizar 7 indicadores técnicos RSI, MACD, ROC, WMA, OBV, el indicador Williams y el oscilador estocástico que determinan el estado actual del mercado. Luego de validar el modelo, se concluyó que existen diferentes empresas peruanas que han podido superar las dificultades de la pandemia con suficiente potencial de crecimiento durante este periodo post-covid. Nuestra principal pregunta de investigación: ¿Es factible predecir acciones de empresas peruanas con potencial de crecimiento durante la pandemia del Covid-19, utilizando el algoritmo de Regresión por Vectores de Soporte (SVR) como Machine Learning en la Bolsa de Valores de Lima (BVL)?application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAcciones (Valores)EmpresasAlgoritmosAprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#2.11.04Prediction of Peruvian Companies' Stock Prices Using Machine Learninginfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0002-1711-6603103002857220547317682870667725https://purl.org/pe-repo/renati/level#tituloProfesionalPendientehttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_73176828_T.pdfT018_73176828_T.pdfTesisapplication/pdf241966https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/1/T018_73176828_T.pdf464ce21b7d7a7a2e55d02983e81dc763MD51FA_73176828_SR.pdfFA_73176828_SR.pdfAutorizaciónapplication/pdf222978https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/2/FA_73176828_SR.pdfbdea351aaf128ca24ffb6360e9784e12MD52TURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdfTURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdfReporte de similitudapplication/pdf2184868https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/3/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf6f932e942b8a9738da5ee060b215a82eMD53TEXTT018_73176828_T.pdf.txtT018_73176828_T.pdf.txtExtracted texttext/plain14763https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/4/T018_73176828_T.pdf.txta2b32e4a23747d3dec39ccd572ef52cbMD54FA_73176828_SR.pdf.txtFA_73176828_SR.pdf.txtExtracted texttext/plain2591https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/6/FA_73176828_SR.pdf.txte034fb2ad1dffd69d83da5f005c7c111MD56TURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.txtTURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.txtExtracted texttext/plain538https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/8/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.txtcff7937a99ee7a5cfe34405e655352d6MD58THUMBNAILT018_73176828_T.pdf.jpgT018_73176828_T.pdf.jpgGenerated Thumbnailimage/jpeg10200https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/5/T018_73176828_T.pdf.jpg5df598937fbca8f042c5d6768df161faMD55FA_73176828_SR.pdf.jpgFA_73176828_SR.pdf.jpgGenerated Thumbnailimage/jpeg16346https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/7/FA_73176828_SR.pdf.jpg6599f3395e0a770472641f7d2c00d663MD57TURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.jpgTURNITIN_ESPIRITU PERA JOSE ANTONIO_20170531 .pdf.jpgGenerated Thumbnailimage/jpeg7767https://repositorio.ulima.edu.pe/bitstream/20.500.12724/21096/9/TURNITIN_ESPIRITU%20PERA%20JOSE%20ANTONIO_20170531%20.pdf.jpga348ca9462e2ade40193ee60bc384ee0MD5920.500.12724/21096oai:repositorio.ulima.edu.pe:20.500.12724/210962025-07-14 16:43:57.953Repositorio Universidad de Limarepositorio@ulima.edu.pe
score 13.243791
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).