Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
Descripción del Articulo
In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intend...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/19794 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/19794 |
| Nivel de acceso: | acceso abierto |
| Materia: | Aprendizaje automático Gestión de stocks Adquisiciones en la empresa Machine learning Inventory control Industrial procurement https://purl.org/pe-repo/ocde/ford#2.11.04 |
| id |
RULI_9eee55ba31b38cd34e0a2d30eb99f685 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/19794 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.es_PE.fl_str_mv |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service |
| title |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service |
| spellingShingle |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service Panduro Lope, Jamil Venturo Aprendizaje automático Gestión de stocks Adquisiciones en la empresa Machine learning Inventory control Industrial procurement https://purl.org/pe-repo/ocde/ford#2.11.04 |
| title_short |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service |
| title_full |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service |
| title_fullStr |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service |
| title_full_unstemmed |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service |
| title_sort |
Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service |
| author |
Panduro Lope, Jamil Venturo |
| author_facet |
Panduro Lope, Jamil Venturo Pumayauri Hidalgo, Sebastian Emilio |
| author_role |
author |
| author2 |
Pumayauri Hidalgo, Sebastian Emilio |
| author2_role |
author |
| dc.contributor.advisor.fl_str_mv |
García López, Yván Jesús |
| dc.contributor.author.fl_str_mv |
Panduro Lope, Jamil Venturo Pumayauri Hidalgo, Sebastian Emilio |
| dc.subject.es_PE.fl_str_mv |
Aprendizaje automático Gestión de stocks Adquisiciones en la empresa Machine learning Inventory control Industrial procurement |
| topic |
Aprendizaje automático Gestión de stocks Adquisiciones en la empresa Machine learning Inventory control Industrial procurement https://purl.org/pe-repo/ocde/ford#2.11.04 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
| description |
In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intended the companies that handle high volumes of inventory and constant orders should have a forecast plan to cover possible stock-outs. The main purpose of the research is to explain a way to prevent stock-outs using an artificial intelligence model, based on historical sales data of a medium-sized company that manages inventories, as well as to determine the machine earning model to predict and reduce backorders. For the data analysis, the Orange software was used, where the data was trained with different artificial intelligence models such as Decision Tree, Support Vector Machine, Random Forest, and neural networks. The most accurate model was defined according to numerical indicators such as the confusion matrix, the area under the curve (AUC) and the ROC curve analysis. Thus, we opted for the neural network model, which presented the most accurate data. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-01-26T15:38:55Z |
| dc.date.available.none.fl_str_mv |
2024-01-26T15:38:55Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.other.none.fl_str_mv |
Tesis |
| format |
bachelorThesis |
| dc.identifier.citation.es_PE.fl_str_mv |
Panduro Lope, J. V. & Pumayauri Hidalgo, S. E. (2023). Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/19794 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/19794 |
| dc.identifier.isni.none.fl_str_mv |
121541816 |
| identifier_str_mv |
Panduro Lope, J. V. & Pumayauri Hidalgo, S. E. (2023). Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/19794 121541816 |
| url |
https://hdl.handle.net/20.500.12724/19794 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Lima |
| dc.publisher.country.none.fl_str_mv |
PE |
| publisher.none.fl_str_mv |
Universidad de Lima |
| dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/4/license_rdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/5/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/7/T018_73054202_T.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/9/FA_73054202_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/11/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/1/T018_73054202_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/2/FA_73054202_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/3/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/6/T018_73054202_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/8/FA_73054202_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/10/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.txt |
| bitstream.checksum.fl_str_mv |
8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 93163a5790a8b432bf8d5612eff63e5c e8de1f25eaee3921a33c4615d5de8b66 d13253ea14beb8d08fc8f623482d00da d7def33786971f2d16026252ca60343c 6cd6ab4f26be6e1c212e1e531d1329bb e82699e047963340583c94b56eadc99e 5c47e78c47a5ce4de36383251f2788bf 73da906b14a7e8080c7cc066ebab6081 0231cd9a72cf6acd78d0c7bdddc13c0b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1853587820027838464 |
| spelling |
García López, Yván JesúsPanduro Lope, Jamil VenturoPumayauri Hidalgo, Sebastian Emilio2024-01-26T15:38:55Z2024-01-26T15:38:55Z2023Panduro Lope, J. V. & Pumayauri Hidalgo, S. E. (2023). Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/19794https://hdl.handle.net/20.500.12724/19794121541816In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intended the companies that handle high volumes of inventory and constant orders should have a forecast plan to cover possible stock-outs. The main purpose of the research is to explain a way to prevent stock-outs using an artificial intelligence model, based on historical sales data of a medium-sized company that manages inventories, as well as to determine the machine earning model to predict and reduce backorders. For the data analysis, the Orange software was used, where the data was trained with different artificial intelligence models such as Decision Tree, Support Vector Machine, Random Forest, and neural networks. The most accurate model was defined according to numerical indicators such as the confusion matrix, the area under the curve (AUC) and the ROC curve analysis. Thus, we opted for the neural network model, which presented the most accurate data.En el presente trabajo se precisa analizar el aumento de BackOrder en la atención de pedidos crossdocking en la atención de clientes Homecenter debido a la no definición de procesos de planeación de compras, derivando en costos logísticos cobros de fill rate y bajo nivel de servicio. De tal forma se pretende que las empresas que manejan alto volúmenes de inventario y pedidos constantes, deben contar con un plan de pronóstico para cubrir posibles quiebres de stock. El principal propósito de la investigación es explicar una forma de prevenir roturas de stock usando un modelo de inteligencia artificial, basado en data histórica de ventas de una mediana empresa que maneja inventarios, así mismo se planteó el objetivo de determinar el modelo de machine learning para predecir y reducir los Backorders Para el análisis de data se utilizó el Sotfware Orange, donde se entrenó la data con diferentes modelos de inteligencia artificial como Árbol de decisiones, Maquina de soporte de vectores, bosque aleatorio, y redes neuronales. Donde se definió el modelo más preciso de acuerdo a indicadores numéricos como la matriz de confusión, el área bajo la curva (AUC) y el análisis de la curva ROC. Optando así por el modelo de redes neuronales, modelo que presentó datos más precisos. Finalmente se presenta los resultados y se realiza la sugerencia a nivel de gerencia sobre la toma de decisiones en el proceso de abastecimiento. Para ello se considera pertinente ahondar en el tema de las variables influyen la acumulación de backorders.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAprendizaje automáticoGestión de stocksAdquisiciones en la empresaMachine learningInventory controlIndustrial procurementhttps://purl.org/pe-repo/ocde/ford#2.11.04Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Serviceinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de Ingeniería y ArquitecturaIngeniero Industrialhttps://orcid.org/0000-0001-9577-418860744537220267305420276043474https://purl.org/pe-repo/renati/level#tituloProfesionalChávez Ugáz, RafaelTaquía Gutiérrez, José AntonioGarcía López, Yván Jesúshttps://purl.org/pe-repo/renati/type#tesis9CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/4/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55THUMBNAILT018_73054202_T.pdf.jpgT018_73054202_T.pdf.jpgGenerated Thumbnailimage/jpeg11421https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/7/T018_73054202_T.pdf.jpg93163a5790a8b432bf8d5612eff63e5cMD57FA_73054202_SR.pdf.jpgFA_73054202_SR.pdf.jpgGenerated Thumbnailimage/jpeg16312https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/9/FA_73054202_SR.pdf.jpge8de1f25eaee3921a33c4615d5de8b66MD59TURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.jpgTURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.jpgGenerated Thumbnailimage/jpeg6968https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/11/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.jpgd13253ea14beb8d08fc8f623482d00daMD511ORIGINALT018_73054202_T.pdfT018_73054202_T.pdfTesisapplication/pdf285311https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/1/T018_73054202_T.pdfd7def33786971f2d16026252ca60343cMD51FA_73054202_SR.pdfFA_73054202_SR.pdfReporte de similitudapplication/pdf215626https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/2/FA_73054202_SR.pdf6cd6ab4f26be6e1c212e1e531d1329bbMD52TURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdfTURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdfReporte de similitudapplication/pdf2155320https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/3/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdfe82699e047963340583c94b56eadc99eMD53TEXTT018_73054202_T.pdf.txtT018_73054202_T.pdf.txtExtracted texttext/plain15931https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/6/T018_73054202_T.pdf.txt5c47e78c47a5ce4de36383251f2788bfMD56FA_73054202_SR.pdf.txtFA_73054202_SR.pdf.txtExtracted texttext/plain2789https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/8/FA_73054202_SR.pdf.txt73da906b14a7e8080c7cc066ebab6081MD58TURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.txtTURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.txtExtracted texttext/plain1210https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/10/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.txt0231cd9a72cf6acd78d0c7bdddc13c0bMD51020.500.12724/19794oai:repositorio.ulima.edu.pe:20.500.12724/197942025-09-18 12:38:57.221Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
12.818822 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).