Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service

Descripción del Articulo

In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intend...

Descripción completa

Detalles Bibliográficos
Autores: Panduro Lope, Jamil Venturo, Pumayauri Hidalgo, Sebastian Emilio
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19794
Enlace del recurso:https://hdl.handle.net/20.500.12724/19794
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Gestión de stocks
Adquisiciones en la empresa
Machine learning
Inventory control
Industrial procurement
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_9eee55ba31b38cd34e0a2d30eb99f685
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/19794
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
title Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
spellingShingle Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
Panduro Lope, Jamil Venturo
Aprendizaje automático
Gestión de stocks
Adquisiciones en la empresa
Machine learning
Inventory control
Industrial procurement
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
title_full Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
title_fullStr Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
title_full_unstemmed Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
title_sort Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service
author Panduro Lope, Jamil Venturo
author_facet Panduro Lope, Jamil Venturo
Pumayauri Hidalgo, Sebastian Emilio
author_role author
author2 Pumayauri Hidalgo, Sebastian Emilio
author2_role author
dc.contributor.advisor.fl_str_mv García López, Yván Jesús
dc.contributor.author.fl_str_mv Panduro Lope, Jamil Venturo
Pumayauri Hidalgo, Sebastian Emilio
dc.subject.es_PE.fl_str_mv Aprendizaje automático
Gestión de stocks
Adquisiciones en la empresa
Machine learning
Inventory control
Industrial procurement
topic Aprendizaje automático
Gestión de stocks
Adquisiciones en la empresa
Machine learning
Inventory control
Industrial procurement
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intended the companies that handle high volumes of inventory and constant orders should have a forecast plan to cover possible stock-outs. The main purpose of the research is to explain a way to prevent stock-outs using an artificial intelligence model, based on historical sales data of a medium-sized company that manages inventories, as well as to determine the machine earning model to predict and reduce backorders. For the data analysis, the Orange software was used, where the data was trained with different artificial intelligence models such as Decision Tree, Support Vector Machine, Random Forest, and neural networks. The most accurate model was defined according to numerical indicators such as the confusion matrix, the area under the curve (AUC) and the ROC curve analysis. Thus, we opted for the neural network model, which presented the most accurate data.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-01-26T15:38:55Z
dc.date.available.none.fl_str_mv 2024-01-26T15:38:55Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Panduro Lope, J. V. & Pumayauri Hidalgo, S. E. (2023). Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/19794
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/19794
dc.identifier.isni.none.fl_str_mv 121541816
identifier_str_mv Panduro Lope, J. V. & Pumayauri Hidalgo, S. E. (2023). Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/19794
121541816
url https://hdl.handle.net/20.500.12724/19794
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/4/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/5/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/7/T018_73054202_T.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/9/FA_73054202_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/11/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/1/T018_73054202_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/2/FA_73054202_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/3/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/6/T018_73054202_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/8/FA_73054202_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/10/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
93163a5790a8b432bf8d5612eff63e5c
e8de1f25eaee3921a33c4615d5de8b66
d13253ea14beb8d08fc8f623482d00da
d7def33786971f2d16026252ca60343c
6cd6ab4f26be6e1c212e1e531d1329bb
e82699e047963340583c94b56eadc99e
5c47e78c47a5ce4de36383251f2788bf
73da906b14a7e8080c7cc066ebab6081
0231cd9a72cf6acd78d0c7bdddc13c0b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1853587820027838464
spelling García López, Yván JesúsPanduro Lope, Jamil VenturoPumayauri Hidalgo, Sebastian Emilio2024-01-26T15:38:55Z2024-01-26T15:38:55Z2023Panduro Lope, J. V. & Pumayauri Hidalgo, S. E. (2023). Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/19794https://hdl.handle.net/20.500.12724/19794121541816In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intended the companies that handle high volumes of inventory and constant orders should have a forecast plan to cover possible stock-outs. The main purpose of the research is to explain a way to prevent stock-outs using an artificial intelligence model, based on historical sales data of a medium-sized company that manages inventories, as well as to determine the machine earning model to predict and reduce backorders. For the data analysis, the Orange software was used, where the data was trained with different artificial intelligence models such as Decision Tree, Support Vector Machine, Random Forest, and neural networks. The most accurate model was defined according to numerical indicators such as the confusion matrix, the area under the curve (AUC) and the ROC curve analysis. Thus, we opted for the neural network model, which presented the most accurate data.En el presente trabajo se precisa analizar el aumento de BackOrder en la atención de pedidos crossdocking en la atención de clientes Homecenter debido a la no definición de procesos de planeación de compras, derivando en costos logísticos cobros de fill rate y bajo nivel de servicio. De tal forma se pretende que las empresas que manejan alto volúmenes de inventario y pedidos constantes, deben contar con un plan de pronóstico para cubrir posibles quiebres de stock. El principal propósito de la investigación es explicar una forma de prevenir roturas de stock usando un modelo de inteligencia artificial, basado en data histórica de ventas de una mediana empresa que maneja inventarios, así mismo se planteó el objetivo de determinar el modelo de machine learning para predecir y reducir los Backorders Para el análisis de data se utilizó el Sotfware Orange, donde se entrenó la data con diferentes modelos de inteligencia artificial como Árbol de decisiones, Maquina de soporte de vectores, bosque aleatorio, y redes neuronales. Donde se definió el modelo más preciso de acuerdo a indicadores numéricos como la matriz de confusión, el área bajo la curva (AUC) y el análisis de la curva ROC. Optando así por el modelo de redes neuronales, modelo que presentó datos más precisos. Finalmente se presenta los resultados y se realiza la sugerencia a nivel de gerencia sobre la toma de decisiones en el proceso de abastecimiento. Para ello se considera pertinente ahondar en el tema de las variables influyen la acumulación de backorders.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAAprendizaje automáticoGestión de stocksAdquisiciones en la empresaMachine learningInventory controlIndustrial procurementhttps://purl.org/pe-repo/ocde/ford#2.11.04Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Serviceinfo:eu-repo/semantics/bachelorThesisTesisSUNEDUTítulo ProfesionalIngeniería IndustrialUniversidad de Lima. Facultad de Ingeniería y ArquitecturaIngeniero Industrialhttps://orcid.org/0000-0001-9577-418860744537220267305420276043474https://purl.org/pe-repo/renati/level#tituloProfesionalChávez Ugáz, RafaelTaquía Gutiérrez, José AntonioGarcía López, Yván Jesúshttps://purl.org/pe-repo/renati/type#tesis9CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/4/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55THUMBNAILT018_73054202_T.pdf.jpgT018_73054202_T.pdf.jpgGenerated Thumbnailimage/jpeg11421https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/7/T018_73054202_T.pdf.jpg93163a5790a8b432bf8d5612eff63e5cMD57FA_73054202_SR.pdf.jpgFA_73054202_SR.pdf.jpgGenerated Thumbnailimage/jpeg16312https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/9/FA_73054202_SR.pdf.jpge8de1f25eaee3921a33c4615d5de8b66MD59TURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.jpgTURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.jpgGenerated Thumbnailimage/jpeg6968https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/11/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.jpgd13253ea14beb8d08fc8f623482d00daMD511ORIGINALT018_73054202_T.pdfT018_73054202_T.pdfTesisapplication/pdf285311https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/1/T018_73054202_T.pdfd7def33786971f2d16026252ca60343cMD51FA_73054202_SR.pdfFA_73054202_SR.pdfReporte de similitudapplication/pdf215626https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/2/FA_73054202_SR.pdf6cd6ab4f26be6e1c212e1e531d1329bbMD52TURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdfTURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdfReporte de similitudapplication/pdf2155320https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/3/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdfe82699e047963340583c94b56eadc99eMD53TEXTT018_73054202_T.pdf.txtT018_73054202_T.pdf.txtExtracted texttext/plain15931https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/6/T018_73054202_T.pdf.txt5c47e78c47a5ce4de36383251f2788bfMD56FA_73054202_SR.pdf.txtFA_73054202_SR.pdf.txtExtracted texttext/plain2789https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/8/FA_73054202_SR.pdf.txt73da906b14a7e8080c7cc066ebab6081MD58TURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.txtTURNITIN_PANDURO LOPE JAMIL VENTURO_20172692.pdf.txtExtracted texttext/plain1210https://repositorio.ulima.edu.pe/bitstream/20.500.12724/19794/10/TURNITIN_PANDURO%20LOPE%20JAMIL%20VENTURO_20172692.pdf.txt0231cd9a72cf6acd78d0c7bdddc13c0bMD51020.500.12724/19794oai:repositorio.ulima.edu.pe:20.500.12724/197942025-09-18 12:38:57.221Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.818822
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).