Use of a Machine Learning model for the reduction of BackOrders in the Cross Docking sales process for the Homecenter Order Service

Descripción del Articulo

In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intend...

Descripción completa

Detalles Bibliográficos
Autores: Panduro Lope, Jamil Venturo, Pumayauri Hidalgo, Sebastian Emilio
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19794
Enlace del recurso:https://hdl.handle.net/20.500.12724/19794
Nivel de acceso:acceso abierto
Materia:Aprendizaje automático
Gestión de stocks
Adquisiciones en la empresa
Machine learning
Inventory control
Industrial procurement
https://purl.org/pe-repo/ocde/ford#2.11.04
Descripción
Sumario:In this work, it is necessary to analyze the increase of Back Order in the attention of crossdocking orders in the attention of Homecenter customers due to the lack of definition of purchase planning processes, resulting in logistics costs, fill rate charges and low service level. Thus, it is intended the companies that handle high volumes of inventory and constant orders should have a forecast plan to cover possible stock-outs. The main purpose of the research is to explain a way to prevent stock-outs using an artificial intelligence model, based on historical sales data of a medium-sized company that manages inventories, as well as to determine the machine earning model to predict and reduce backorders. For the data analysis, the Orange software was used, where the data was trained with different artificial intelligence models such as Decision Tree, Support Vector Machine, Random Forest, and neural networks. The most accurate model was defined according to numerical indicators such as the confusion matrix, the area under the curve (AUC) and the ROC curve analysis. Thus, we opted for the neural network model, which presented the most accurate data.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).