Comparison of machine learning algorithms to identify and prevent low back injury

Descripción del Articulo

With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a...

Descripción completa

Detalles Bibliográficos
Autores: Ovalle Paulino, Christian, Huamani Correa, Jorge
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14596
Enlace del recurso:https://hdl.handle.net/20.500.12867/14596
https://doi.org/10.11591/ijece.v15i1.pp894-907
Nivel de acceso:acceso abierto
Materia:Algorithm comparison
Computational medicine
Lumbar injuries
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a common health problem. A predictive model for early diagnosis and prevention of these injuries was developed using datasets from open data repositories. Six machine learning models were used to train the data. Results showed that logistic regression was the most effective model, with performance curves of 70%, 90%, and 99%. Performance metrics indicated 86% accuracy, 85% recall, and 86% F1-score. Accuracy of 70%, recall of 71%, and F1-score of 63% reflect the robust ability of the model to address the problem. In addition, an intuitive interface was implemented using Gradio Software to improve data visualization.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).