Comparison of machine learning algorithms to identify and prevent low back injury

Descripción del Articulo

With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a...

Descripción completa

Detalles Bibliográficos
Autores: Ovalle Paulino, Christian, Huamani Correa, Jorge
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14596
Enlace del recurso:https://hdl.handle.net/20.500.12867/14596
https://doi.org/10.11591/ijece.v15i1.pp894-907
Nivel de acceso:acceso abierto
Materia:Algorithm comparison
Computational medicine
Lumbar injuries
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_37e917431017a11b587f8a04157fce05
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14596
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Comparison of machine learning algorithms to identify and prevent low back injury
title Comparison of machine learning algorithms to identify and prevent low back injury
spellingShingle Comparison of machine learning algorithms to identify and prevent low back injury
Ovalle Paulino, Christian
Algorithm comparison
Computational medicine
Lumbar injuries
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Comparison of machine learning algorithms to identify and prevent low back injury
title_full Comparison of machine learning algorithms to identify and prevent low back injury
title_fullStr Comparison of machine learning algorithms to identify and prevent low back injury
title_full_unstemmed Comparison of machine learning algorithms to identify and prevent low back injury
title_sort Comparison of machine learning algorithms to identify and prevent low back injury
author Ovalle Paulino, Christian
author_facet Ovalle Paulino, Christian
Huamani Correa, Jorge
author_role author
author2 Huamani Correa, Jorge
author2_role author
dc.contributor.author.fl_str_mv Ovalle Paulino, Christian
Huamani Correa, Jorge
dc.subject.es_PE.fl_str_mv Algorithm comparison
Computational medicine
Lumbar injuries
Machine learning
topic Algorithm comparison
Computational medicine
Lumbar injuries
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a common health problem. A predictive model for early diagnosis and prevention of these injuries was developed using datasets from open data repositories. Six machine learning models were used to train the data. Results showed that logistic regression was the most effective model, with performance curves of 70%, 90%, and 99%. Performance metrics indicated 86% accuracy, 85% recall, and 86% F1-score. Accuracy of 70%, recall of 71%, and F1-score of 63% reflect the robust ability of the model to address the problem. In addition, an intuitive interface was implemented using Gradio Software to improve data visualization.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-11-12T17:19:21Z
dc.date.available.none.fl_str_mv 2025-11-12T17:19:21Z
dc.date.issued.fl_str_mv 2025
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2088-8708
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14596
dc.identifier.journal.es_PE.fl_str_mv International Journal of Electrical and Computer Engineering
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijece.v15i1.pp894-907
identifier_str_mv 2088-8708
International Journal of Electrical and Computer Engineering
url https://hdl.handle.net/20.500.12867/14596
https://doi.org/10.11591/ijece.v15i1.pp894-907
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a1642586-3d95-42c3-bf24-2c8db616ff7e/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/76bfbb1f-b777-4dab-b45b-b3cc63e0810c/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/64224007-5bd0-4d90-8873-fd5f24f6f335/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4e890037-5ec7-47bb-90bf-5a4ee454080a/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ae3b030-36bf-4df2-957f-b97bb8637f7c/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/93cb60f5-6311-4a13-a2f4-b3146816df56/download
bitstream.checksum.fl_str_mv 52fdfeef0bab61cdb6634c4181aa5c8c
8a4605be74aa9ea9d79846c1fba20a33
e537080a5aaabe5c52325c311e95ea98
1e79a25d51d1035d8678b7a1bed0ffb5
07e71f793db8b5d927c6c65d3c871f00
3ffd43e3e930259622b6d7cd6a5b7b70
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231508082819072
spelling Ovalle Paulino, ChristianHuamani Correa, Jorge2025-11-12T17:19:21Z2025-11-12T17:19:21Z20252088-8708https://hdl.handle.net/20.500.12867/14596International Journal of Electrical and Computer Engineeringhttps://doi.org/10.11591/ijece.v15i1.pp894-907With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a common health problem. A predictive model for early diagnosis and prevention of these injuries was developed using datasets from open data repositories. Six machine learning models were used to train the data. Results showed that logistic regression was the most effective model, with performance curves of 70%, 90%, and 99%. Performance metrics indicated 86% accuracy, 85% recall, and 86% F1-score. Accuracy of 70%, recall of 71%, and F1-score of 63% reflect the robust ability of the model to address the problem. In addition, an intuitive interface was implemented using Gradio Software to improve data visualization.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAlgorithm comparisonComputational medicineLumbar injuriesMachine learninghttps://purl.org/pe-repo/ocde/ford#2.02.04Comparison of machine learning algorithms to identify and prevent low back injuryinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Ovalle_J.Huamani_Articulo_2025.pdfC.Ovalle_J.Huamani_Articulo_2025.pdfapplication/pdf851220https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a1642586-3d95-42c3-bf24-2c8db616ff7e/download52fdfeef0bab61cdb6634c4181aa5c8cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/76bfbb1f-b777-4dab-b45b-b3cc63e0810c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTOvalle.C_Huamani.J_Articulo_2025.pdf.txtOvalle.C_Huamani.J_Articulo_2025.pdf.txtExtracted texttext/plain48695https://repositorio.utp.edu.pe/backend/api/core/bitstreams/64224007-5bd0-4d90-8873-fd5f24f6f335/downloade537080a5aaabe5c52325c311e95ea98MD53C.Ovalle_J.Huamani_Articulo_2025.pdf.txtC.Ovalle_J.Huamani_Articulo_2025.pdf.txtExtracted texttext/plain49947https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4e890037-5ec7-47bb-90bf-5a4ee454080a/download1e79a25d51d1035d8678b7a1bed0ffb5MD57THUMBNAILOvalle.C_Huamani.J_Articulo_2025.pdf.jpgOvalle.C_Huamani.J_Articulo_2025.pdf.jpgGenerated Thumbnailimage/jpeg21306https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ae3b030-36bf-4df2-957f-b97bb8637f7c/download07e71f793db8b5d927c6c65d3c871f00MD54C.Ovalle_J.Huamani_Articulo_2025.pdf.jpgC.Ovalle_J.Huamani_Articulo_2025.pdf.jpgGenerated Thumbnailimage/jpeg40021https://repositorio.utp.edu.pe/backend/api/core/bitstreams/93cb60f5-6311-4a13-a2f4-b3146816df56/download3ffd43e3e930259622b6d7cd6a5b7b70MD5820.500.12867/14596oai:repositorio.utp.edu.pe:20.500.12867/145962025-11-30 16:59:31.053https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.934021
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).