Comparison of machine learning algorithms to identify and prevent low back injury
Descripción del Articulo
With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14596 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14596 https://doi.org/10.11591/ijece.v15i1.pp894-907 |
| Nivel de acceso: | acceso abierto |
| Materia: | Algorithm comparison Computational medicine Lumbar injuries Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_37e917431017a11b587f8a04157fce05 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14596 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Comparison of machine learning algorithms to identify and prevent low back injury |
| title |
Comparison of machine learning algorithms to identify and prevent low back injury |
| spellingShingle |
Comparison of machine learning algorithms to identify and prevent low back injury Ovalle Paulino, Christian Algorithm comparison Computational medicine Lumbar injuries Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Comparison of machine learning algorithms to identify and prevent low back injury |
| title_full |
Comparison of machine learning algorithms to identify and prevent low back injury |
| title_fullStr |
Comparison of machine learning algorithms to identify and prevent low back injury |
| title_full_unstemmed |
Comparison of machine learning algorithms to identify and prevent low back injury |
| title_sort |
Comparison of machine learning algorithms to identify and prevent low back injury |
| author |
Ovalle Paulino, Christian |
| author_facet |
Ovalle Paulino, Christian Huamani Correa, Jorge |
| author_role |
author |
| author2 |
Huamani Correa, Jorge |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Ovalle Paulino, Christian Huamani Correa, Jorge |
| dc.subject.es_PE.fl_str_mv |
Algorithm comparison Computational medicine Lumbar injuries Machine learning |
| topic |
Algorithm comparison Computational medicine Lumbar injuries Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a common health problem. A predictive model for early diagnosis and prevention of these injuries was developed using datasets from open data repositories. Six machine learning models were used to train the data. Results showed that logistic regression was the most effective model, with performance curves of 70%, 90%, and 99%. Performance metrics indicated 86% accuracy, 85% recall, and 86% F1-score. Accuracy of 70%, recall of 71%, and F1-score of 63% reflect the robust ability of the model to address the problem. In addition, an intuitive interface was implemented using Gradio Software to improve data visualization. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-12T17:19:21Z |
| dc.date.available.none.fl_str_mv |
2025-11-12T17:19:21Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2088-8708 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14596 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Electrical and Computer Engineering |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijece.v15i1.pp894-907 |
| identifier_str_mv |
2088-8708 International Journal of Electrical and Computer Engineering |
| url |
https://hdl.handle.net/20.500.12867/14596 https://doi.org/10.11591/ijece.v15i1.pp894-907 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a1642586-3d95-42c3-bf24-2c8db616ff7e/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/76bfbb1f-b777-4dab-b45b-b3cc63e0810c/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/64224007-5bd0-4d90-8873-fd5f24f6f335/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4e890037-5ec7-47bb-90bf-5a4ee454080a/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ae3b030-36bf-4df2-957f-b97bb8637f7c/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/93cb60f5-6311-4a13-a2f4-b3146816df56/download |
| bitstream.checksum.fl_str_mv |
52fdfeef0bab61cdb6634c4181aa5c8c 8a4605be74aa9ea9d79846c1fba20a33 e537080a5aaabe5c52325c311e95ea98 1e79a25d51d1035d8678b7a1bed0ffb5 07e71f793db8b5d927c6c65d3c871f00 3ffd43e3e930259622b6d7cd6a5b7b70 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231508082819072 |
| spelling |
Ovalle Paulino, ChristianHuamani Correa, Jorge2025-11-12T17:19:21Z2025-11-12T17:19:21Z20252088-8708https://hdl.handle.net/20.500.12867/14596International Journal of Electrical and Computer Engineeringhttps://doi.org/10.11591/ijece.v15i1.pp894-907With the advancement of technology, remote work and virtual classes have become increasingly common, leading to prolonged periods in front of computers and, consequently, to discomfort and even lower back pain. This study compares machine learning algorithms to identify and prevent low back pain, a common health problem. A predictive model for early diagnosis and prevention of these injuries was developed using datasets from open data repositories. Six machine learning models were used to train the data. Results showed that logistic regression was the most effective model, with performance curves of 70%, 90%, and 99%. Performance metrics indicated 86% accuracy, 85% recall, and 86% F1-score. Accuracy of 70%, recall of 71%, and F1-score of 63% reflect the robust ability of the model to address the problem. In addition, an intuitive interface was implemented using Gradio Software to improve data visualization.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAlgorithm comparisonComputational medicineLumbar injuriesMachine learninghttps://purl.org/pe-repo/ocde/ford#2.02.04Comparison of machine learning algorithms to identify and prevent low back injuryinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALC.Ovalle_J.Huamani_Articulo_2025.pdfC.Ovalle_J.Huamani_Articulo_2025.pdfapplication/pdf851220https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a1642586-3d95-42c3-bf24-2c8db616ff7e/download52fdfeef0bab61cdb6634c4181aa5c8cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/76bfbb1f-b777-4dab-b45b-b3cc63e0810c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTOvalle.C_Huamani.J_Articulo_2025.pdf.txtOvalle.C_Huamani.J_Articulo_2025.pdf.txtExtracted texttext/plain48695https://repositorio.utp.edu.pe/backend/api/core/bitstreams/64224007-5bd0-4d90-8873-fd5f24f6f335/downloade537080a5aaabe5c52325c311e95ea98MD53C.Ovalle_J.Huamani_Articulo_2025.pdf.txtC.Ovalle_J.Huamani_Articulo_2025.pdf.txtExtracted texttext/plain49947https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4e890037-5ec7-47bb-90bf-5a4ee454080a/download1e79a25d51d1035d8678b7a1bed0ffb5MD57THUMBNAILOvalle.C_Huamani.J_Articulo_2025.pdf.jpgOvalle.C_Huamani.J_Articulo_2025.pdf.jpgGenerated Thumbnailimage/jpeg21306https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6ae3b030-36bf-4df2-957f-b97bb8637f7c/download07e71f793db8b5d927c6c65d3c871f00MD54C.Ovalle_J.Huamani_Articulo_2025.pdf.jpgC.Ovalle_J.Huamani_Articulo_2025.pdf.jpgGenerated Thumbnailimage/jpeg40021https://repositorio.utp.edu.pe/backend/api/core/bitstreams/93cb60f5-6311-4a13-a2f4-b3146816df56/download3ffd43e3e930259622b6d7cd6a5b7b70MD5820.500.12867/14596oai:repositorio.utp.edu.pe:20.500.12867/145962025-11-30 16:59:31.053https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.934021 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).