On the relevance of the metadata used in the semantic segmentation of indoor image spaces

Descripción del Articulo

The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work revie...

Descripción completa

Detalles Bibliográficos
Autores: Vasquez Espinoza L., Castillo Cara, José Manuel, Orozco Barbosa L.
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/13669
Enlace del recurso:https://hdl.handle.net/20.500.12724/13669
https://doi.org/10.1016/j.eswa.2021.115486
Nivel de acceso:acceso abierto
Materia:Computer vision
Deep learning (Machine learning)
Visión por computadora
Aprendizaje profundo (Aprendizaje automático)
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_825fd02ff7cc3f3ce797c2fc160e4607
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/13669
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv On the relevance of the metadata used in the semantic segmentation of indoor image spaces
title On the relevance of the metadata used in the semantic segmentation of indoor image spaces
spellingShingle On the relevance of the metadata used in the semantic segmentation of indoor image spaces
Vasquez Espinoza L.
Computer vision
Deep learning (Machine learning)
Visión por computadora
Aprendizaje profundo (Aprendizaje automático)
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short On the relevance of the metadata used in the semantic segmentation of indoor image spaces
title_full On the relevance of the metadata used in the semantic segmentation of indoor image spaces
title_fullStr On the relevance of the metadata used in the semantic segmentation of indoor image spaces
title_full_unstemmed On the relevance of the metadata used in the semantic segmentation of indoor image spaces
title_sort On the relevance of the metadata used in the semantic segmentation of indoor image spaces
author Vasquez Espinoza L.
author_facet Vasquez Espinoza L.
Castillo Cara, José Manuel
Orozco Barbosa L.
author_role author
author2 Castillo Cara, José Manuel
Orozco Barbosa L.
author2_role author
author
dc.contributor.other.none.fl_str_mv Castillo Cara, José Manuel
dc.contributor.author.fl_str_mv Vasquez Espinoza L.
Castillo Cara, José Manuel
Orozco Barbosa L.
dc.subject.en_EN.fl_str_mv Computer vision
Deep learning (Machine learning)
topic Computer vision
Deep learning (Machine learning)
Visión por computadora
Aprendizaje profundo (Aprendizaje automático)
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Visión por computadora
Aprendizaje profundo (Aprendizaje automático)
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work reviews the well-known segmentation efforts in computer vision. However, our primary focus is on the quantitative evaluation of the amount of contextual information provided to the neural network. In particular, the information used to mimic the tacit information that a human is capable of using, like a sense of unambiguous order and the capability of improving its estimation by complementing already learned information. Our results show that, after a set of pre and post-processing methods applied to both the training data and the neural network architecture, the predictions made were drastically closer to the expected output in comparison to the cases where no contextual additions were provided. Our results provide evidence that learning systems strongly rely on contextual information for the identification task process.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-02T17:00:40Z
dc.date.available.none.fl_str_mv 2021-08-02T17:00:40Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Vasquez-Espinoza, L., Castillo-Cara, J. M. & Orozco-Barbosa L. (2021). On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Systems with Applications, 184. https://doi.org/10.1016/j.eswa.2021.115486
dc.identifier.issn.none.fl_str_mv 0957-4174
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/13669
dc.identifier.journal.none.fl_str_mv Expert Systems with Applications
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.eswa.2021.115486
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85109921392
identifier_str_mv Vasquez-Espinoza, L., Castillo-Cara, J. M. & Orozco-Barbosa L. (2021). On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Systems with Applications, 184. https://doi.org/10.1016/j.eswa.2021.115486
0957-4174
Expert Systems with Applications
0000000121541816
2-s2.0-85109921392
url https://hdl.handle.net/20.500.12724/13669
https://doi.org/10.1016/j.eswa.2021.115486
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:0957-4174
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Elsevier
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844710161967480832
spelling Vasquez Espinoza L.Castillo Cara, José ManuelOrozco Barbosa L.Castillo Cara, José Manuel2021-08-02T17:00:40Z2021-08-02T17:00:40Z2021Vasquez-Espinoza, L., Castillo-Cara, J. M. & Orozco-Barbosa L. (2021). On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Systems with Applications, 184. https://doi.org/10.1016/j.eswa.2021.1154860957-4174https://hdl.handle.net/20.500.12724/13669Expert Systems with Applications0000000121541816https://doi.org/10.1016/j.eswa.2021.1154862-s2.0-85109921392The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work reviews the well-known segmentation efforts in computer vision. However, our primary focus is on the quantitative evaluation of the amount of contextual information provided to the neural network. In particular, the information used to mimic the tacit information that a human is capable of using, like a sense of unambiguous order and the capability of improving its estimation by complementing already learned information. Our results show that, after a set of pre and post-processing methods applied to both the training data and the neural network architecture, the predictions made were drastically closer to the expected output in comparison to the cases where no contextual additions were provided. Our results provide evidence that learning systems strongly rely on contextual information for the identification task process.application/htmlengElsevierNLurn:issn:0957-4174info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAComputer visionDeep learning (Machine learning)Visión por computadoraAprendizaje profundo (Aprendizaje automático)https://purl.org/pe-repo/ocde/ford#2.02.04On the relevance of the metadata used in the semantic segmentation of indoor image spacesinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería de SistemasCastillo-Cara, José Manuel (Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/13669oai:repositorio.ulima.edu.pe:20.500.12724/136692025-03-06 19:40:01.422Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.9067135
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).