On the relevance of the metadata used in the semantic segmentation of indoor image spaces
Descripción del Articulo
The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work revie...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/13669 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/13669 https://doi.org/10.1016/j.eswa.2021.115486 |
Nivel de acceso: | acceso abierto |
Materia: | Computer vision Deep learning (Machine learning) Visión por computadora Aprendizaje profundo (Aprendizaje automático) https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
RULI_825fd02ff7cc3f3ce797c2fc160e4607 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/13669 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.en_EN.fl_str_mv |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
spellingShingle |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces Vasquez Espinoza L. Computer vision Deep learning (Machine learning) Visión por computadora Aprendizaje profundo (Aprendizaje automático) https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_full |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_fullStr |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_full_unstemmed |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
title_sort |
On the relevance of the metadata used in the semantic segmentation of indoor image spaces |
author |
Vasquez Espinoza L. |
author_facet |
Vasquez Espinoza L. Castillo Cara, José Manuel Orozco Barbosa L. |
author_role |
author |
author2 |
Castillo Cara, José Manuel Orozco Barbosa L. |
author2_role |
author author |
dc.contributor.other.none.fl_str_mv |
Castillo Cara, José Manuel |
dc.contributor.author.fl_str_mv |
Vasquez Espinoza L. Castillo Cara, José Manuel Orozco Barbosa L. |
dc.subject.en_EN.fl_str_mv |
Computer vision Deep learning (Machine learning) |
topic |
Computer vision Deep learning (Machine learning) Visión por computadora Aprendizaje profundo (Aprendizaje automático) https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.es_PE.fl_str_mv |
Visión por computadora Aprendizaje profundo (Aprendizaje automático) |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work reviews the well-known segmentation efforts in computer vision. However, our primary focus is on the quantitative evaluation of the amount of contextual information provided to the neural network. In particular, the information used to mimic the tacit information that a human is capable of using, like a sense of unambiguous order and the capability of improving its estimation by complementing already learned information. Our results show that, after a set of pre and post-processing methods applied to both the training data and the neural network architecture, the predictions made were drastically closer to the expected output in comparison to the cases where no contextual additions were provided. Our results provide evidence that learning systems strongly rely on contextual information for the identification task process. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-02T17:00:40Z |
dc.date.available.none.fl_str_mv |
2021-08-02T17:00:40Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo en Scopus |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Vasquez-Espinoza, L., Castillo-Cara, J. M. & Orozco-Barbosa L. (2021). On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Systems with Applications, 184. https://doi.org/10.1016/j.eswa.2021.115486 |
dc.identifier.issn.none.fl_str_mv |
0957-4174 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/13669 |
dc.identifier.journal.none.fl_str_mv |
Expert Systems with Applications |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.eswa.2021.115486 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85109921392 |
identifier_str_mv |
Vasquez-Espinoza, L., Castillo-Cara, J. M. & Orozco-Barbosa L. (2021). On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Systems with Applications, 184. https://doi.org/10.1016/j.eswa.2021.115486 0957-4174 Expert Systems with Applications 0000000121541816 2-s2.0-85109921392 |
url |
https://hdl.handle.net/20.500.12724/13669 https://doi.org/10.1016/j.eswa.2021.115486 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:0957-4174 |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/html |
dc.publisher.none.fl_str_mv |
Elsevier |
dc.publisher.country.none.fl_str_mv |
NL |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/2/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1844710161967480832 |
spelling |
Vasquez Espinoza L.Castillo Cara, José ManuelOrozco Barbosa L.Castillo Cara, José Manuel2021-08-02T17:00:40Z2021-08-02T17:00:40Z2021Vasquez-Espinoza, L., Castillo-Cara, J. M. & Orozco-Barbosa L. (2021). On the relevance of the metadata used in the semantic segmentation of indoor image spaces. Expert Systems with Applications, 184. https://doi.org/10.1016/j.eswa.2021.1154860957-4174https://hdl.handle.net/20.500.12724/13669Expert Systems with Applications0000000121541816https://doi.org/10.1016/j.eswa.2021.1154862-s2.0-85109921392The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work reviews the well-known segmentation efforts in computer vision. However, our primary focus is on the quantitative evaluation of the amount of contextual information provided to the neural network. In particular, the information used to mimic the tacit information that a human is capable of using, like a sense of unambiguous order and the capability of improving its estimation by complementing already learned information. Our results show that, after a set of pre and post-processing methods applied to both the training data and the neural network architecture, the predictions made were drastically closer to the expected output in comparison to the cases where no contextual additions were provided. Our results provide evidence that learning systems strongly rely on contextual information for the identification task process.application/htmlengElsevierNLurn:issn:0957-4174info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAComputer visionDeep learning (Machine learning)Visión por computadoraAprendizaje profundo (Aprendizaje automático)https://purl.org/pe-repo/ocde/ford#2.02.04On the relevance of the metadata used in the semantic segmentation of indoor image spacesinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería de SistemasCastillo-Cara, José Manuel (Universidad de Lima)OILICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/13669/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/13669oai:repositorio.ulima.edu.pe:20.500.12724/136692025-03-06 19:40:01.422Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
12.9067135 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).