On the relevance of the metadata used in the semantic segmentation of indoor image spaces

Descripción del Articulo

The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work revie...

Descripción completa

Detalles Bibliográficos
Autores: Vasquez Espinoza L., Castillo Cara, José Manuel, Orozco Barbosa L.
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/13669
Enlace del recurso:https://hdl.handle.net/20.500.12724/13669
https://doi.org/10.1016/j.eswa.2021.115486
Nivel de acceso:acceso abierto
Materia:Computer vision
Deep learning (Machine learning)
Visión por computadora
Aprendizaje profundo (Aprendizaje automático)
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:The study of artificial learning processes in the area of computer vision context has mainly focused on achieving a fixed output target rather than on identifying the underlying processes as a means to develop solutions capable of performing as good as or better than the human brain. This work reviews the well-known segmentation efforts in computer vision. However, our primary focus is on the quantitative evaluation of the amount of contextual information provided to the neural network. In particular, the information used to mimic the tacit information that a human is capable of using, like a sense of unambiguous order and the capability of improving its estimation by complementing already learned information. Our results show that, after a set of pre and post-processing methods applied to both the training data and the neural network architecture, the predictions made were drastically closer to the expected output in comparison to the cases where no contextual additions were provided. Our results provide evidence that learning systems strongly rely on contextual information for the identification task process.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).