Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
Descripción del Articulo
Una gran cantidad de infantes fallecen cada año a consecuencia de la neumonía en todo el mundo. Se reporta que aproximadamente más de 1 millón de casos de neumonía en infantes se da entre 0 y 5 años de edad, de los cuales 808 694 murieron en 2017. Por ende, la neumonía es una de las principales caus...
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17541 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/17541 https://doi.org/10.26439/ciis2021.5586 |
| Nivel de acceso: | acceso abierto |
| Materia: | Pendiente https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
RULI_7208789b1f462a69080cf5b5cc77ed94 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17541 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.es_PE.fl_str_mv |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax |
| title |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax |
| spellingShingle |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax Valero Gómez, Juan Carlos Pendiente https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax |
| title_full |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax |
| title_fullStr |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax |
| title_full_unstemmed |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax |
| title_sort |
Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax |
| author |
Valero Gómez, Juan Carlos |
| author_facet |
Valero Gómez, Juan Carlos Zúñiga Incalla, Alex Peter Clares Perca, Juan Carlos |
| author_role |
author |
| author2 |
Zúñiga Incalla, Alex Peter Clares Perca, Juan Carlos |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Valero Gómez, Juan Carlos Zúñiga Incalla, Alex Peter Clares Perca, Juan Carlos |
| dc.subject.es_PE.fl_str_mv |
Pendiente |
| topic |
Pendiente https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Una gran cantidad de infantes fallecen cada año a consecuencia de la neumonía en todo el mundo. Se reporta que aproximadamente más de 1 millón de casos de neumonía en infantes se da entre 0 y 5 años de edad, de los cuales 808 694 murieron en 2017. Por ende, la neumonía es una de las principales causas de fallecimiento entre los infantes, con un alto nivel de mortalidad en Asia y África. Incluso en un país desarrollado como Estados Unidos, la neumonía se encuentra entre las 10 principales causas de muerte. La detección y el tratamiento tempranos de la neumonía pueden reducir significativamente las tasas de mortalidad entre los infantes en países emergentes. Por lo tanto, este trabajo presenta algoritmos de deep learning para detectar neumonía mediante imágenes de radiográficas. Se entrenaron tres algoritmos de deep learning para clasificar las imágenes de radiografías en dos clases: neumonía y normal. Se presentan tres algoritmos, a cada uno se añadió una capa pooling de 4x4, se vectoriza los datos con la técnica flatten, se agregaron seis capas dense de 1024, 512, 256, 128, 64 y 32 de valor de salida y cada una con activación relu; se aplica un BatchNormalization, finalmente se agrega una capa dense de 2 con una activación softmax para la clasificación. Los tres algoritmos son modelos previamente entrenados, que son Xception, MobileNet e InceptionV3 obtuvieron en la métrica de accuracy 94.4%, 96.2% y 95.3% respectivamente. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2023-02-02T14:11:46Z |
| dc.date.available.none.fl_str_mv |
2023-02-02T14:11:46Z |
| dc.date.issued.fl_str_mv |
2021 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.other.none.fl_str_mv |
Artículo de conferencia |
| format |
conferenceObject |
| dc.identifier.citation.es_PE.fl_str_mv |
Valero Gómez, J. C., Zúñiga Incalla, A. P. & Clares Perca, J. C. (2021). Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax. En Universidad de Lima (Ed.), Sociedad digital: retos y opotunidades de una nueva realidad. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 183-194), Lima, 26 al 28 de octubre del 2021. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2021.5586 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17541 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.26439/ciis2021.5586 |
| identifier_str_mv |
Valero Gómez, J. C., Zúñiga Incalla, A. P. & Clares Perca, J. C. (2021). Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax. En Universidad de Lima (Ed.), Sociedad digital: retos y opotunidades de una nueva realidad. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 183-194), Lima, 26 al 28 de octubre del 2021. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2021.5586 |
| url |
https://hdl.handle.net/20.500.12724/17541 https://doi.org/10.26439/ciis2021.5586 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad de Lima |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima |
| dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/3/license.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/2/license_rdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8fc46f5e71650fd7adee84a69b9163c2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1822513599603539968 |
| spelling |
Valero Gómez, Juan CarlosZúñiga Incalla, Alex PeterClares Perca, Juan Carlos2023-02-02T14:11:46Z2023-02-02T14:11:46Z2021Valero Gómez, J. C., Zúñiga Incalla, A. P. & Clares Perca, J. C. (2021). Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax. En Universidad de Lima (Ed.), Sociedad digital: retos y opotunidades de una nueva realidad. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 183-194), Lima, 26 al 28 de octubre del 2021. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2021.5586https://hdl.handle.net/20.500.12724/17541https://doi.org/10.26439/ciis2021.5586Una gran cantidad de infantes fallecen cada año a consecuencia de la neumonía en todo el mundo. Se reporta que aproximadamente más de 1 millón de casos de neumonía en infantes se da entre 0 y 5 años de edad, de los cuales 808 694 murieron en 2017. Por ende, la neumonía es una de las principales causas de fallecimiento entre los infantes, con un alto nivel de mortalidad en Asia y África. Incluso en un país desarrollado como Estados Unidos, la neumonía se encuentra entre las 10 principales causas de muerte. La detección y el tratamiento tempranos de la neumonía pueden reducir significativamente las tasas de mortalidad entre los infantes en países emergentes. Por lo tanto, este trabajo presenta algoritmos de deep learning para detectar neumonía mediante imágenes de radiográficas. Se entrenaron tres algoritmos de deep learning para clasificar las imágenes de radiografías en dos clases: neumonía y normal. Se presentan tres algoritmos, a cada uno se añadió una capa pooling de 4x4, se vectoriza los datos con la técnica flatten, se agregaron seis capas dense de 1024, 512, 256, 128, 64 y 32 de valor de salida y cada una con activación relu; se aplica un BatchNormalization, finalmente se agrega una capa dense de 2 con una activación softmax para la clasificación. Los tres algoritmos son modelos previamente entrenados, que son Xception, MobileNet e InceptionV3 obtuvieron en la métrica de accuracy 94.4%, 96.2% y 95.3% respectivamente.Revisado por paresapplication/pdfspaUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendientehttps://purl.org/pe-repo/ocde/ford#2.02.04Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tóraxinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/17541oai:repositorio.ulima.edu.pe:20.500.12724/175412023-11-07 12:43:00.083Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.9061165 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).