Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax

Descripción del Articulo

Una gran cantidad de infantes fallecen cada año a consecuencia de la neumonía en todo el mundo. Se reporta que aproximadamente más de 1 millón de casos de neumonía en infantes se da entre 0 y 5 años de edad, de los cuales 808 694 murieron en 2017. Por ende, la neumonía es una de las principales caus...

Descripción completa

Detalles Bibliográficos
Autores: Valero Gómez, Juan Carlos, Zúñiga Incalla, Alex Peter, Clares Perca, Juan Carlos
Formato: objeto de conferencia
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17541
Enlace del recurso:https://hdl.handle.net/20.500.12724/17541
https://doi.org/10.26439/ciis2021.5586
Nivel de acceso:acceso abierto
Materia:Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_7208789b1f462a69080cf5b5cc77ed94
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/17541
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
title Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
spellingShingle Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
Valero Gómez, Juan Carlos
Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
title_full Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
title_fullStr Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
title_full_unstemmed Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
title_sort Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax
author Valero Gómez, Juan Carlos
author_facet Valero Gómez, Juan Carlos
Zúñiga Incalla, Alex Peter
Clares Perca, Juan Carlos
author_role author
author2 Zúñiga Incalla, Alex Peter
Clares Perca, Juan Carlos
author2_role author
author
dc.contributor.author.fl_str_mv Valero Gómez, Juan Carlos
Zúñiga Incalla, Alex Peter
Clares Perca, Juan Carlos
dc.subject.es_PE.fl_str_mv Pendiente
topic Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Una gran cantidad de infantes fallecen cada año a consecuencia de la neumonía en todo el mundo. Se reporta que aproximadamente más de 1 millón de casos de neumonía en infantes se da entre 0 y 5 años de edad, de los cuales 808 694 murieron en 2017. Por ende, la neumonía es una de las principales causas de fallecimiento entre los infantes, con un alto nivel de mortalidad en Asia y África. Incluso en un país desarrollado como Estados Unidos, la neumonía se encuentra entre las 10 principales causas de muerte. La detección y el tratamiento tempranos de la neumonía pueden reducir significativamente las tasas de mortalidad entre los infantes en países emergentes. Por lo tanto, este trabajo presenta algoritmos de deep learning para detectar neumonía mediante imágenes de radiográficas. Se entrenaron tres algoritmos de deep learning para clasificar las imágenes de radiografías en dos clases: neumonía y normal. Se presentan tres algoritmos, a cada uno se añadió una capa pooling de 4x4, se vectoriza los datos con la técnica flatten, se agregaron seis capas dense de 1024, 512, 256, 128, 64 y 32 de valor de salida y cada una con activación relu; se aplica un BatchNormalization, finalmente se agrega una capa dense de 2 con una activación softmax para la clasificación. Los tres algoritmos son modelos previamente entrenados, que son Xception, MobileNet e InceptionV3 obtuvieron en la métrica de accuracy 94.4%, 96.2% y 95.3% respectivamente.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2023-02-02T14:11:46Z
dc.date.available.none.fl_str_mv 2023-02-02T14:11:46Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.other.none.fl_str_mv Artículo de conferencia
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Valero Gómez, J. C., Zúñiga Incalla, A. P. & Clares Perca, J. C. (2021). Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax. En Universidad de Lima (Ed.), Sociedad digital: retos y opotunidades de una nueva realidad. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 183-194), Lima, 26 al 28 de octubre del 2021. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2021.5586
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/17541
dc.identifier.doi.none.fl_str_mv https://doi.org/10.26439/ciis2021.5586
identifier_str_mv Valero Gómez, J. C., Zúñiga Incalla, A. P. & Clares Perca, J. C. (2021). Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax. En Universidad de Lima (Ed.), Sociedad digital: retos y opotunidades de una nueva realidad. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 183-194), Lima, 26 al 28 de octubre del 2021. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2021.5586
url https://hdl.handle.net/20.500.12724/17541
https://doi.org/10.26439/ciis2021.5586
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad de Lima
dc.publisher.country.es_PE.fl_str_mv PE
dc.source.es_PE.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/3/license.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/2/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8fc46f5e71650fd7adee84a69b9163c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1822513599603539968
spelling Valero Gómez, Juan CarlosZúñiga Incalla, Alex PeterClares Perca, Juan Carlos2023-02-02T14:11:46Z2023-02-02T14:11:46Z2021Valero Gómez, J. C., Zúñiga Incalla, A. P. & Clares Perca, J. C. (2021). Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tórax. En Universidad de Lima (Ed.), Sociedad digital: retos y opotunidades de una nueva realidad. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 183-194), Lima, 26 al 28 de octubre del 2021. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2021.5586https://hdl.handle.net/20.500.12724/17541https://doi.org/10.26439/ciis2021.5586Una gran cantidad de infantes fallecen cada año a consecuencia de la neumonía en todo el mundo. Se reporta que aproximadamente más de 1 millón de casos de neumonía en infantes se da entre 0 y 5 años de edad, de los cuales 808 694 murieron en 2017. Por ende, la neumonía es una de las principales causas de fallecimiento entre los infantes, con un alto nivel de mortalidad en Asia y África. Incluso en un país desarrollado como Estados Unidos, la neumonía se encuentra entre las 10 principales causas de muerte. La detección y el tratamiento tempranos de la neumonía pueden reducir significativamente las tasas de mortalidad entre los infantes en países emergentes. Por lo tanto, este trabajo presenta algoritmos de deep learning para detectar neumonía mediante imágenes de radiográficas. Se entrenaron tres algoritmos de deep learning para clasificar las imágenes de radiografías en dos clases: neumonía y normal. Se presentan tres algoritmos, a cada uno se añadió una capa pooling de 4x4, se vectoriza los datos con la técnica flatten, se agregaron seis capas dense de 1024, 512, 256, 128, 64 y 32 de valor de salida y cada una con activación relu; se aplica un BatchNormalization, finalmente se agrega una capa dense de 2 con una activación softmax para la clasificación. Los tres algoritmos son modelos previamente entrenados, que son Xception, MobileNet e InceptionV3 obtuvieron en la métrica de accuracy 94.4%, 96.2% y 95.3% respectivamente.Revisado por paresapplication/pdfspaUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendientehttps://purl.org/pe-repo/ocde/ford#2.02.04Algoritmos de Deep Learning para la detección de neumonía en infantes a través de imágenes de radiografías del tóraxinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17541/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD5220.500.12724/17541oai:repositorio.ulima.edu.pe:20.500.12724/175412023-11-07 12:43:00.083Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.9061165
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).