Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools

Descripción del Articulo

This study focuses on developing a solution to one of the main problems in the food sector, product deterioration, often due to poor inventory management, low turnover, and lack of shelf-life control, among other causes. Therefore, this study is based on the design of a lean inventory management mod...

Descripción completa

Detalles Bibliográficos
Autores: Carbajal Vásquez, Keysi Alejandra, Piscoya Alvites, Renato Alejandro, Quiroz Flores, Juan Carlos, García López, Yván Jesús, Nallusamy, S.
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19463
Enlace del recurso:https://hdl.handle.net/20.500.12724/19463
https://doi.org/10.14445/23488360/IJME-V10I10P102
Nivel de acceso:acceso abierto
Materia:Lean manufacturing
Efficient production
Waste minimization
Organizational effectiveness
Producción eficiente
Minimización de residuos
Eficacia organizacional
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_625d043a0885631c65604e2c97bf0d45
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/19463
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Carbajal Vásquez, Keysi AlejandraPiscoya Alvites, Renato AlejandroQuiroz Flores, Juan CarlosGarcía López, Yván JesúsNallusamy, S.Quiroz Flores, Juan CarlosGarcía López, Yván JesúsCarbajal Vásquez, Keysi Alejandra (Ingeniería Industrial)Piscoya Alvites, Renato Alejandro (Ingeniería Industrial)2023-12-07T17:39:42Z2023-12-07T17:39:42Z2023Carbajal-Vásquez, K. A., Piscoya-Alvites, R. A., Quiroz-Flores, J. C., García-Lopez, Y, Nallusamy, S. (2023). Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools. SSRG International Journal of Mechanical Engineering, 10(10), 12-26. https://doi.org/10.14445/23488360/IJME-V10I10P1022348-8360https://hdl.handle.net/20.500.12724/19463SSRG International Journal of Mechanical Engineering0000000121541816https://doi.org/10.14445/23488360/IJME-V10I10P1022-s2.0-85175614672This study focuses on developing a solution to one of the main problems in the food sector, product deterioration, often due to poor inventory management, low turnover, and lack of shelf-life control, among other causes. Therefore, this study is based on the design of a lean inventory management model proposed to reduce the number of deteriorated products in an egg product company in Peru, based on the analysis of the problem within the company and the study of previous research. As a result, the proposed method uses the tools of Machine Learning, Material Requirement Planning (MRP), 5S, and First Extended First Out (FEFO), reducing the main problem by 65.57% and the demand forecast error by 47.21%, thus reducing one of the leading root causes of the main problem. Thanks to this improvement, this research can contribute knowledge so that other companies with similar issues can implement the model and improve their results.application/htmlengSeventh Sense Research GroupINurn:issn: 2348-8360info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMALean manufacturingEfficient productionWaste minimizationOrganizational effectivenessProducción eficienteMinimización de residuosEficacia organizacionalhttps://purl.org/pe-repo/ocde/ford#2.11.04Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Toolsinfo:eu-repo/semantics/articleArtículo en ScopusQuiroz Flores, Juan Carlos (Ingeniería Industrial)García López, Yván Jesús (Ingeniería Industrial)García López, Yván Jesús (Engineering Faculty, Industrial Engineering Career, Universidad de Lima)620.500.12724/19463oai:repositorio.ulima.edu.pe:20.500.12724/194632024-11-08 16:16:11.97Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.en_EN.fl_str_mv Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
title Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
spellingShingle Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
Carbajal Vásquez, Keysi Alejandra
Lean manufacturing
Efficient production
Waste minimization
Organizational effectiveness
Producción eficiente
Minimización de residuos
Eficacia organizacional
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
title_full Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
title_fullStr Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
title_full_unstemmed Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
title_sort Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools
author Carbajal Vásquez, Keysi Alejandra
author_facet Carbajal Vásquez, Keysi Alejandra
Piscoya Alvites, Renato Alejandro
Quiroz Flores, Juan Carlos
García López, Yván Jesús
Nallusamy, S.
author_role author
author2 Piscoya Alvites, Renato Alejandro
Quiroz Flores, Juan Carlos
García López, Yván Jesús
Nallusamy, S.
author2_role author
author
author
author
dc.contributor.other.none.fl_str_mv Quiroz Flores, Juan Carlos
García López, Yván Jesús
dc.contributor.student.none.fl_str_mv Carbajal Vásquez, Keysi Alejandra (Ingeniería Industrial)
Piscoya Alvites, Renato Alejandro (Ingeniería Industrial)
dc.contributor.author.fl_str_mv Carbajal Vásquez, Keysi Alejandra
Piscoya Alvites, Renato Alejandro
Quiroz Flores, Juan Carlos
García López, Yván Jesús
Nallusamy, S.
dc.subject.en_EN.fl_str_mv Lean manufacturing
Efficient production
Waste minimization
Organizational effectiveness
topic Lean manufacturing
Efficient production
Waste minimization
Organizational effectiveness
Producción eficiente
Minimización de residuos
Eficacia organizacional
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.es_PE.fl_str_mv Producción eficiente
Minimización de residuos
Eficacia organizacional
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description This study focuses on developing a solution to one of the main problems in the food sector, product deterioration, often due to poor inventory management, low turnover, and lack of shelf-life control, among other causes. Therefore, this study is based on the design of a lean inventory management model proposed to reduce the number of deteriorated products in an egg product company in Peru, based on the analysis of the problem within the company and the study of previous research. As a result, the proposed method uses the tools of Machine Learning, Material Requirement Planning (MRP), 5S, and First Extended First Out (FEFO), reducing the main problem by 65.57% and the demand forecast error by 47.21%, thus reducing one of the leading root causes of the main problem. Thanks to this improvement, this research can contribute knowledge so that other companies with similar issues can implement the model and improve their results.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-07T17:39:42Z
dc.date.available.none.fl_str_mv 2023-12-07T17:39:42Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Carbajal-Vásquez, K. A., Piscoya-Alvites, R. A., Quiroz-Flores, J. C., García-Lopez, Y, Nallusamy, S. (2023). Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools. SSRG International Journal of Mechanical Engineering, 10(10), 12-26. https://doi.org/10.14445/23488360/IJME-V10I10P102
dc.identifier.issn.none.fl_str_mv 2348-8360
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/19463
dc.identifier.journal.none.fl_str_mv SSRG International Journal of Mechanical Engineering
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14445/23488360/IJME-V10I10P102
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85175614672
identifier_str_mv Carbajal-Vásquez, K. A., Piscoya-Alvites, R. A., Quiroz-Flores, J. C., García-Lopez, Y, Nallusamy, S. (2023). Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools. SSRG International Journal of Mechanical Engineering, 10(10), 12-26. https://doi.org/10.14445/23488360/IJME-V10I10P102
2348-8360
SSRG International Journal of Mechanical Engineering
0000000121541816
2-s2.0-85175614672
url https://hdl.handle.net/20.500.12724/19463
https://doi.org/10.14445/23488360/IJME-V10I10P102
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 2348-8360
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Seventh Sense Research Group
dc.publisher.country.none.fl_str_mv IN
publisher.none.fl_str_mv Seventh Sense Research Group
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1847246645194915840
score 13.129991
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).