Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste

Descripción del Articulo

The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous stud...

Descripción completa

Detalles Bibliográficos
Autores: Mendoza Sotomayor, Raul, Sabogal Arias, Jose Antonio
Formato: tesis de grado
Fecha de Publicación:2025
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/23147
Enlace del recurso:https://hdl.handle.net/20.500.12724/23147
Nivel de acceso:acceso abierto
Materia:Pendiente
https://purl.org/pe-repo/ocde/ford#2.11.04
id RULI_492f8e1fda74e072f694711f34b55b80
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/23147
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
title Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
spellingShingle Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
Mendoza Sotomayor, Raul
Pendiente
https://purl.org/pe-repo/ocde/ford#2.11.04
title_short Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
title_full Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
title_fullStr Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
title_full_unstemmed Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
title_sort Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
author Mendoza Sotomayor, Raul
author_facet Mendoza Sotomayor, Raul
Sabogal Arias, Jose Antonio
author_role author
author2 Sabogal Arias, Jose Antonio
author2_role author
dc.contributor.advisor.fl_str_mv Quiroz Flores, Juan Carlos
dc.contributor.author.fl_str_mv Mendoza Sotomayor, Raul
Sabogal Arias, Jose Antonio
dc.subject.es_PE.fl_str_mv Pendiente
topic Pendiente
https://purl.org/pe-repo/ocde/ford#2.11.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.11.04
description The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training, implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. It is imperative that future research explores new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-09-04T12:52:06Z
dc.date.available.none.fl_str_mv 2025-09-04T12:52:06Z
dc.date.issued.fl_str_mv 2025
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.other.none.fl_str_mv Tesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/23147
dc.identifier.isni.none.fl_str_mv 0000000121541816
url https://hdl.handle.net/20.500.12724/23147
identifier_str_mv 0000000121541816
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/10/T018_71909864_T.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/2/FA_71909864_SR.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/3/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/6/FA_71909864_SR.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/8/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/11/T018_71909864_T.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/7/FA_71909864_SR.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/9/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/12/T018_71909864_T.pdf.jpg
bitstream.checksum.fl_str_mv a49975c287b2be86e93eef9d2ee3d9ef
f92644bf97415fdd780a74f56307f480
22d1ce0936b6a9f3c1111b72a2c617e0
9d26c45e1a8662cf648b45ce73a298b3
98888594c9d32da1dd93e000ba00121f
c42eef6f5450e7bf687a5060e298109d
7e1b11faa9b246eb90d4bd8d87bd5a44
3ab9a2be4d3aa26c3ca48b4f54a6c1dc
2261cacc261fb810083f5d42f3767221
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1845977509973196800
spelling Quiroz Flores, Juan CarlosMendoza Sotomayor, RaulSabogal Arias, Jose Antonio2025-09-04T12:52:06Z2025-09-04T12:52:06Z2025https://hdl.handle.net/20.500.12724/231470000000121541816The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training, implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. It is imperative that future research explores new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes.El sector de fabricación de bebidas alcohólicas y no alcohólicas enfrenta desafíos persistentes que impactan directamente en la eficiencia operativa y la rentabilidad empresarial. Los problemas recurrentes en los equipos y las prácticas subóptimas de los operadores generan un desperdicio significativo y retrasos en la producción. Estudios previos han explorado metodologías como Six Sigma, Lean Manufacturing y Kaizen para abordar estos desafíos, destacando herramientas como VSM, 5S y SMED. El sector necesita con urgencia mejorar la capacitación de los operadores e implementar tecnologías avanzadas de monitoreo y control para reducir las fallas en los equipos. Este estudio propone un modelo que integra Lean Manufacturing y Machine Learning para optimizar el proceso de producción, reducir los tiempos de cambio en las líneas y disminuir el porcentaje de desperdicio. Los resultados clave mostraron una mejora significativa en la eficiencia de producción, con una reducción del 42.4% en el tiempo de control de calidad gracias a la metodología 5S y una disminución en el desperdicio mediante controles preventivos. La implementación de SMED logró aumentar la eficiencia de producción en un 33.3%. El impacto académico y socioeconómico de esta investigación es considerable, ya que proporciona un marco práctico y aplicable para mejorar la productividad y la competitividad en la industria de bebidas. Además, promueve la sostenibilidad económica al optimizar el uso de recursos y reducir costos. Es imperativo que futuras investigaciones exploren nuevas direcciones para la integración de tecnologías emergentes en el ámbito de Lean Manufacturing, incentivando a académicos y profesionales a seguir innovando en la mejora de los procesos industriales.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0Pendientehttps://purl.org/pe-repo/ocde/ford#2.11.04Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce wasteinfo:eu-repo/semantics/bachelorThesisTesisreponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASUNEDUTitulo profesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-4123103002857220267190986477911677https://purl.org/pe-repo/renati/level#tituloProfesionalCalderón Gonzáles, Wilson DavidUrbina Rivera, Carlos MedardoQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_71909864_T.pdfT018_71909864_T.pdfDescargarapplication/pdf315034https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/10/T018_71909864_T.pdfa49975c287b2be86e93eef9d2ee3d9efMD510FA_71909864_SR.pdfFA_71909864_SR.pdfAutorizaciónapplication/pdf256358https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/2/FA_71909864_SR.pdff92644bf97415fdd780a74f56307f480MD52TURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdfTURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdfReporte de similitudapplication/pdf518871https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/3/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf22d1ce0936b6a9f3c1111b72a2c617e0MD53TEXTFA_71909864_SR.pdf.txtFA_71909864_SR.pdf.txtExtracted texttext/plain4413https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/6/FA_71909864_SR.pdf.txt9d26c45e1a8662cf648b45ce73a298b3MD56TURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.txtTURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.txtExtracted texttext/plain25114https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/8/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.txt98888594c9d32da1dd93e000ba00121fMD58T018_71909864_T.pdf.txtT018_71909864_T.pdf.txtExtracted texttext/plain20889https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/11/T018_71909864_T.pdf.txtc42eef6f5450e7bf687a5060e298109dMD511THUMBNAILFA_71909864_SR.pdf.jpgFA_71909864_SR.pdf.jpgGenerated Thumbnailimage/jpeg21280https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/7/FA_71909864_SR.pdf.jpg7e1b11faa9b246eb90d4bd8d87bd5a44MD57TURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.jpgTURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.jpgGenerated Thumbnailimage/jpeg7882https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/9/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.jpg3ab9a2be4d3aa26c3ca48b4f54a6c1dcMD59T018_71909864_T.pdf.jpgT018_71909864_T.pdf.jpgGenerated Thumbnailimage/jpeg11132https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/12/T018_71909864_T.pdf.jpg2261cacc261fb810083f5d42f3767221MD51220.500.12724/23147oai:repositorio.ulima.edu.pe:20.500.12724/231472025-09-18 08:06:28.846Repositorio Universidad de Limarepositorio@ulima.edu.pe
score 13.836569
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).