Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste
Descripción del Articulo
The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous stud...
Autores: | , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2025 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/23147 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/23147 |
Nivel de acceso: | acceso abierto |
Materia: | Pendiente https://purl.org/pe-repo/ocde/ford#2.11.04 |
id |
RULI_492f8e1fda74e072f694711f34b55b80 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/23147 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.es_PE.fl_str_mv |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste |
title |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste |
spellingShingle |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste Mendoza Sotomayor, Raul Pendiente https://purl.org/pe-repo/ocde/ford#2.11.04 |
title_short |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste |
title_full |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste |
title_fullStr |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste |
title_full_unstemmed |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste |
title_sort |
Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce waste |
author |
Mendoza Sotomayor, Raul |
author_facet |
Mendoza Sotomayor, Raul Sabogal Arias, Jose Antonio |
author_role |
author |
author2 |
Sabogal Arias, Jose Antonio |
author2_role |
author |
dc.contributor.advisor.fl_str_mv |
Quiroz Flores, Juan Carlos |
dc.contributor.author.fl_str_mv |
Mendoza Sotomayor, Raul Sabogal Arias, Jose Antonio |
dc.subject.es_PE.fl_str_mv |
Pendiente |
topic |
Pendiente https://purl.org/pe-repo/ocde/ford#2.11.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.11.04 |
description |
The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training, implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. It is imperative that future research explores new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-09-04T12:52:06Z |
dc.date.available.none.fl_str_mv |
2025-09-04T12:52:06Z |
dc.date.issued.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.other.none.fl_str_mv |
Tesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/23147 |
dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
url |
https://hdl.handle.net/20.500.12724/23147 |
identifier_str_mv |
0000000121541816 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
dc.publisher.country.none.fl_str_mv |
PE |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/10/T018_71909864_T.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/2/FA_71909864_SR.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/3/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/6/FA_71909864_SR.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/8/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/11/T018_71909864_T.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/7/FA_71909864_SR.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/9/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/12/T018_71909864_T.pdf.jpg |
bitstream.checksum.fl_str_mv |
a49975c287b2be86e93eef9d2ee3d9ef f92644bf97415fdd780a74f56307f480 22d1ce0936b6a9f3c1111b72a2c617e0 9d26c45e1a8662cf648b45ce73a298b3 98888594c9d32da1dd93e000ba00121f c42eef6f5450e7bf687a5060e298109d 7e1b11faa9b246eb90d4bd8d87bd5a44 3ab9a2be4d3aa26c3ca48b4f54a6c1dc 2261cacc261fb810083f5d42f3767221 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1845977509973196800 |
spelling |
Quiroz Flores, Juan CarlosMendoza Sotomayor, RaulSabogal Arias, Jose Antonio2025-09-04T12:52:06Z2025-09-04T12:52:06Z2025https://hdl.handle.net/20.500.12724/231470000000121541816The alcoholic and non-alcoholic beverage manufacturing sector faces persistent challenges that directly impact operational efficiency and business profitability. Recurrent problems in the equipment and sub-optimal practices of operators generate significant waste and production delays. Previous studies have explored methodologies such as Six Sigma, Lean Manufacturing and Kaizen to address these challenges, highlighting tools such as VSM, 5S and SMED. The sector urgently needs to improve operator training, implement advanced monitoring and control technologies to reduce equipment failures. This study proposes a model that integrates Lean Manufacturing and Machine Learning to optimize the production process, reduce line change times and reduce the percentage of waste. Key results showed a significant improvement in production efficiency, with a 42.4% reduction in quality control time thanks to the 5s methodology and a reduction in waste through preventive controls. The implementation of SMED managed to increase production efficiency 33.3%. The academic and socio-economic impact of this research is considerable, as it provides a practical and applicable framework for improving productivity and competitiveness in the beverage industry. It also promotes economic sustainability by optimizing resource use and reducing costs. It is imperative that future research explores new directions for the integration of emerging technologies in the field of Lean Manufacturing, encouraging academics and professionals to continue innovating in the improvement of industrial processes.El sector de fabricación de bebidas alcohólicas y no alcohólicas enfrenta desafíos persistentes que impactan directamente en la eficiencia operativa y la rentabilidad empresarial. Los problemas recurrentes en los equipos y las prácticas subóptimas de los operadores generan un desperdicio significativo y retrasos en la producción. Estudios previos han explorado metodologías como Six Sigma, Lean Manufacturing y Kaizen para abordar estos desafíos, destacando herramientas como VSM, 5S y SMED. El sector necesita con urgencia mejorar la capacitación de los operadores e implementar tecnologías avanzadas de monitoreo y control para reducir las fallas en los equipos. Este estudio propone un modelo que integra Lean Manufacturing y Machine Learning para optimizar el proceso de producción, reducir los tiempos de cambio en las líneas y disminuir el porcentaje de desperdicio. Los resultados clave mostraron una mejora significativa en la eficiencia de producción, con una reducción del 42.4% en el tiempo de control de calidad gracias a la metodología 5S y una disminución en el desperdicio mediante controles preventivos. La implementación de SMED logró aumentar la eficiencia de producción en un 33.3%. El impacto académico y socioeconómico de esta investigación es considerable, ya que proporciona un marco práctico y aplicable para mejorar la productividad y la competitividad en la industria de bebidas. Además, promueve la sostenibilidad económica al optimizar el uso de recursos y reducir costos. Es imperativo que futuras investigaciones exploren nuevas direcciones para la integración de tecnologías emergentes en el ámbito de Lean Manufacturing, incentivando a académicos y profesionales a seguir innovando en la mejora de los procesos industriales.application/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0Pendientehttps://purl.org/pe-repo/ocde/ford#2.11.04Optimizing beverage manufacturing: integrating lean manufacturing and machine learning to enhance efficiency and reduce wasteinfo:eu-repo/semantics/bachelorThesisTesisreponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASUNEDUTitulo profesionalIngeniería IndustrialUniversidad de Lima. Facultad de IngenieríaIngeniero Industrialhttps://orcid.org/0000-0003-1858-4123103002857220267190986477911677https://purl.org/pe-repo/renati/level#tituloProfesionalCalderón Gonzáles, Wilson DavidUrbina Rivera, Carlos MedardoQuiroz Flores, Juan Carloshttps://purl.org/pe-repo/renati/type#tesisOIORIGINALT018_71909864_T.pdfT018_71909864_T.pdfDescargarapplication/pdf315034https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/10/T018_71909864_T.pdfa49975c287b2be86e93eef9d2ee3d9efMD510FA_71909864_SR.pdfFA_71909864_SR.pdfAutorizaciónapplication/pdf256358https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/2/FA_71909864_SR.pdff92644bf97415fdd780a74f56307f480MD52TURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdfTURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdfReporte de similitudapplication/pdf518871https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/3/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf22d1ce0936b6a9f3c1111b72a2c617e0MD53TEXTFA_71909864_SR.pdf.txtFA_71909864_SR.pdf.txtExtracted texttext/plain4413https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/6/FA_71909864_SR.pdf.txt9d26c45e1a8662cf648b45ce73a298b3MD56TURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.txtTURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.txtExtracted texttext/plain25114https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/8/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.txt98888594c9d32da1dd93e000ba00121fMD58T018_71909864_T.pdf.txtT018_71909864_T.pdf.txtExtracted texttext/plain20889https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/11/T018_71909864_T.pdf.txtc42eef6f5450e7bf687a5060e298109dMD511THUMBNAILFA_71909864_SR.pdf.jpgFA_71909864_SR.pdf.jpgGenerated Thumbnailimage/jpeg21280https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/7/FA_71909864_SR.pdf.jpg7e1b11faa9b246eb90d4bd8d87bd5a44MD57TURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.jpgTURNITIN_MENDOZA SOTOMAYOR RAUL _20184161 .pdf.jpgGenerated Thumbnailimage/jpeg7882https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/9/TURNITIN_MENDOZA%20SOTOMAYOR%20RAUL%20_20184161%20.pdf.jpg3ab9a2be4d3aa26c3ca48b4f54a6c1dcMD59T018_71909864_T.pdf.jpgT018_71909864_T.pdf.jpgGenerated Thumbnailimage/jpeg11132https://repositorio.ulima.edu.pe/bitstream/20.500.12724/23147/12/T018_71909864_T.pdf.jpg2261cacc261fb810083f5d42f3767221MD51220.500.12724/23147oai:repositorio.ulima.edu.pe:20.500.12724/231472025-09-18 08:06:28.846Repositorio Universidad de Limarepositorio@ulima.edu.pe |
score |
13.836569 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).