SumajGAN: transferencia supervisada de maquillaje facial con redes generativas adversarias profundas
Descripción del Articulo
El reto de la transferencia de maquillaje de una imagen a otra ya está resuelto por los modelos BeautyGAN, PairedCycleGAN y BeautyGlow. Estos modelos lograron solucionar el reto mencionado mediante un enfoque de aprendizaje semisupervisado; lo cual resuelve el problema de obtener un dataset alineado...
| Autores: | , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/13919 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/13919 |
| Nivel de acceso: | acceso abierto |
| Materia: | Cosméticos Inteligencia artificial Cosmetics Artificial intelligence Calidad de vida y bienestar / Salud https://purl.org/pe-repo/ocde/ford#2.02.04 |
| Sumario: | El reto de la transferencia de maquillaje de una imagen a otra ya está resuelto por los modelos BeautyGAN, PairedCycleGAN y BeautyGlow. Estos modelos lograron solucionar el reto mencionado mediante un enfoque de aprendizaje semisupervisado; lo cual resuelve el problema de obtener un dataset alineado de maquillaje, pero a costa de un alto poder de cómputo. Por este motivo, en esta investigación se creó un dataset de imágenes alineadas y adicionalmente se propuso un modelo de transferencia de maquillaje mediante un enfoque supervisado. El dataset está compuesto por 5400 grupos de imágenes, cada grupo de imágenes se encuentra conformado por una imagen sin maquillaje, una imagen con maquillaje de referen cia y otra imagen con el maquillaje de la referencia y la identidad de la persona sin maquillaje. El modelo propuesto en esta investigación es llamado SumajGAN, el modelo se encuentra conformado por un discriminador de tipo PatchGAN y un generador de dos entradas inspiradas en un autoencoder. Se realizaron varios experimentos y el mejor resultado obtenido fue de 0,021658644 de error absoluto medio y alta resolución con una correcta transferencia de maquillaje. El modelo SumajGAN ha logrado realizar el objetivo planteado disminuyendo el tiempo de entrenamiento de modelos como BeautyGAN, PairedCycleGAN y BeautyGlow. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).