Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
Descripción del Articulo
        This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniq...
              
            
    
                        | Autores: | , , | 
|---|---|
| Formato: | objeto de conferencia | 
| Fecha de Publicación: | 2024 | 
| Institución: | Universidad de Lima | 
| Repositorio: | ULIMA-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/20835 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/20835 https://doi.org/10.26439/ciis2023.7081 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Pendiente https://purl.org/pe-repo/ocde/ford#2.02.04 | 
| Sumario: | This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree. | 
|---|
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            