Exploring Stroke Risk Identification by Machine Learning: A Systematic Review

Descripción del Articulo

This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniq...

Descripción completa

Detalles Bibliográficos
Autores: Atencia Mondragon, Lelis Raquel, Huarcaya Carbajal, Melany Cristina, Guzmán Jiménez, Rosario Marybel
Formato: objeto de conferencia
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/20835
Enlace del recurso:https://hdl.handle.net/20.500.12724/20835
https://doi.org/10.26439/ciis2023.7081
Nivel de acceso:acceso abierto
Materia:Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).