Exploring Stroke Risk Identification by Machine Learning: A Systematic Review

Descripción del Articulo

This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniq...

Descripción completa

Detalles Bibliográficos
Autores: Atencia Mondragon, Lelis Raquel, Huarcaya Carbajal, Melany Cristina, Guzmán Jiménez, Rosario Marybel
Formato: objeto de conferencia
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/20835
Enlace del recurso:https://hdl.handle.net/20.500.12724/20835
https://doi.org/10.26439/ciis2023.7081
Nivel de acceso:acceso abierto
Materia:Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_1435bb4407b095d972c1c7a5c11d10c2
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/20835
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
title Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
spellingShingle Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
Atencia Mondragon, Lelis Raquel
Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
title_full Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
title_fullStr Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
title_full_unstemmed Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
title_sort Exploring Stroke Risk Identification by Machine Learning: A Systematic Review
author Atencia Mondragon, Lelis Raquel
author_facet Atencia Mondragon, Lelis Raquel
Huarcaya Carbajal, Melany Cristina
Guzmán Jiménez, Rosario Marybel
author_role author
author2 Huarcaya Carbajal, Melany Cristina
Guzmán Jiménez, Rosario Marybel
author2_role author
author
dc.contributor.other.none.fl_str_mv Guzmán Jiménez, Rosario Marybel
dc.contributor.student.none.fl_str_mv Atencia Mondragon, Lelis Raquel (Ingeniería de Sistemas)
Huarcaya Carbajal, Melany Cristina (Ingeniería de Sistemas)
dc.contributor.author.fl_str_mv Atencia Mondragon, Lelis Raquel
Huarcaya Carbajal, Melany Cristina
Guzmán Jiménez, Rosario Marybel
dc.subject.es_PE.fl_str_mv Pendiente
topic Pendiente
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-05T16:43:38Z
dc.date.available.none.fl_str_mv 2024-07-05T16:43:38Z
dc.date.issued.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.other.none.fl_str_mv Artículo de conferencia
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Atencia Mondragon, L. R., Huarcaya Carbajal, M. C., & Guzmán Jiménez, R. M. (2024). Exploring Stroke Risk Identification by Machine Learning: A Systematic Review. En Universidad de Lima (Ed.), Diseñando el presente y el futuro: Inteligencia artificial para el desarrollo sostenible. Actas del VI Congreso Internacional de Ingeniería de Sistemas 2023, (pp. 69-82). Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2023.7081
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/20835
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.event.none.fl_str_mv VI Congreso Internacional de Ingeniería de Sistemas
dc.identifier.doi.none.fl_str_mv https://doi.org/10.26439/ciis2023.7081
identifier_str_mv Atencia Mondragon, L. R., Huarcaya Carbajal, M. C., & Guzmán Jiménez, R. M. (2024). Exploring Stroke Risk Identification by Machine Learning: A Systematic Review. En Universidad de Lima (Ed.), Diseñando el presente y el futuro: Inteligencia artificial para el desarrollo sostenible. Actas del VI Congreso Internacional de Ingeniería de Sistemas 2023, (pp. 69-82). Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2023.7081
0000000121541816
VI Congreso Internacional de Ingeniería de Sistemas
url https://hdl.handle.net/20.500.12724/20835
https://doi.org/10.26439/ciis2023.7081
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20835/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20835/3/license.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1853587749907464192
spelling Atencia Mondragon, Lelis RaquelHuarcaya Carbajal, Melany CristinaGuzmán Jiménez, Rosario MarybelGuzmán Jiménez, Rosario MarybelAtencia Mondragon, Lelis Raquel (Ingeniería de Sistemas)Huarcaya Carbajal, Melany Cristina (Ingeniería de Sistemas)2024-07-05T16:43:38Z2024-07-05T16:43:38Z2024Atencia Mondragon, L. R., Huarcaya Carbajal, M. C., & Guzmán Jiménez, R. M. (2024). Exploring Stroke Risk Identification by Machine Learning: A Systematic Review. En Universidad de Lima (Ed.), Diseñando el presente y el futuro: Inteligencia artificial para el desarrollo sostenible. Actas del VI Congreso Internacional de Ingeniería de Sistemas 2023, (pp. 69-82). Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2023.7081https://hdl.handle.net/20.500.12724/208350000000121541816VI Congreso Internacional de Ingeniería de Sistemashttps://doi.org/10.26439/ciis2023.7081This work aims to systematize previous studies on stroke risk identification and its relationship with machine learning. A systematic review was conducted using the Web of Science and Scopus databases. The information was organized into three sections: stroke risk factors, data preprocessing techniques and techniques for identifying stroke risk with an emphasis on the most important features. The main results are as follows: risk factors are divided into modifiable (work environment and air pollution) and non-modifiable (sex, family history). The most commonly used data preprocessing techniques are SMOTE, standardization and value elimination/imputation. The most commonly used techniques for identifying stroke risk include support vector machine, random forest, logistic regression, naïve Bayes, k-nearest neighbors and decision tree.application/htmlengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendientehttps://purl.org/pe-repo/ocde/ford#2.02.04Exploring Stroke Risk Identification by Machine Learning: A Systematic Reviewinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20835/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/20835/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/20835oai:repositorio.ulima.edu.pe:20.500.12724/208352025-05-13 17:04:36.587Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.686729
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).