Duration models and value at risk using high-frequency data for the peruvian stock market

Descripción del Articulo

Most empirical studies in nance use data on a daily basis which is obtained by retaining the last observation of the day and ignoring all intraday records. However, as a result of the increased automatization of nancial markets and the evolution of computational trading systems, intraday data bases...

Descripción completa

Detalles Bibliográficos
Autores: Téllez De Vettori, Giannio, Najarro Chuchón, Ricardo
Formato: tesis de maestría
Fecha de Publicación:2016
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/156510
Enlace del recurso:http://hdl.handle.net/20.500.12404/7890
Nivel de acceso:acceso abierto
Materia:Bolsa de valores--Perú
Riesgo de mercado--Métodos estadísticos
Riesgo (Economía)--Modelos matemáticos
https://purl.org/pe-repo/ocde/ford#5.02.01
id RPUC_f7bb5d5a0709b0cc2a516547e764cd96
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/156510
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Rodríguez, GabrielTéllez De Vettori, GiannioNajarro Chuchón, Ricardo2017-02-20T16:10:45Z2017-02-20T16:10:45Z20162017-02-20http://hdl.handle.net/20.500.12404/7890Most empirical studies in nance use data on a daily basis which is obtained by retaining the last observation of the day and ignoring all intraday records. However, as a result of the increased automatization of nancial markets and the evolution of computational trading systems, intraday data bases that record every transaction along with their characteristics have been stablished. These data sets prompted the development of a new area of research ( nance with high frequency data), and in 1980 a literature based on the mechanisms of trading began (forms of trading, rules on securities trading, market structure, etc.), originating the Theory of Market Microstructure for the valuation of nancial assets, whose models advocate that timing transmits information. Then the literature proposed an extension to risk management by calculating the implied volatility, which is estimated by the realized volatility on an intraday level, and its applications for a ner value at risk (VaR).engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Bolsa de valores--PerúRiesgo de mercado--Métodos estadísticosRiesgo (Economía)--Modelos matemáticoshttps://purl.org/pe-repo/ocde/ford#5.02.01Duration models and value at risk using high-frequency data for the peruvian stock marketinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en EconomíaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoEconomía311317https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/156510oai:repositorio.pucp.edu.pe:20.500.14657/1565102024-06-10 10:10:52.711http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Duration models and value at risk using high-frequency data for the peruvian stock market
title Duration models and value at risk using high-frequency data for the peruvian stock market
spellingShingle Duration models and value at risk using high-frequency data for the peruvian stock market
Téllez De Vettori, Giannio
Bolsa de valores--Perú
Riesgo de mercado--Métodos estadísticos
Riesgo (Economía)--Modelos matemáticos
https://purl.org/pe-repo/ocde/ford#5.02.01
title_short Duration models and value at risk using high-frequency data for the peruvian stock market
title_full Duration models and value at risk using high-frequency data for the peruvian stock market
title_fullStr Duration models and value at risk using high-frequency data for the peruvian stock market
title_full_unstemmed Duration models and value at risk using high-frequency data for the peruvian stock market
title_sort Duration models and value at risk using high-frequency data for the peruvian stock market
author Téllez De Vettori, Giannio
author_facet Téllez De Vettori, Giannio
Najarro Chuchón, Ricardo
author_role author
author2 Najarro Chuchón, Ricardo
author2_role author
dc.contributor.advisor.fl_str_mv Rodríguez, Gabriel
dc.contributor.author.fl_str_mv Téllez De Vettori, Giannio
Najarro Chuchón, Ricardo
dc.subject.es_ES.fl_str_mv Bolsa de valores--Perú
Riesgo de mercado--Métodos estadísticos
Riesgo (Economía)--Modelos matemáticos
topic Bolsa de valores--Perú
Riesgo de mercado--Métodos estadísticos
Riesgo (Economía)--Modelos matemáticos
https://purl.org/pe-repo/ocde/ford#5.02.01
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.01
description Most empirical studies in nance use data on a daily basis which is obtained by retaining the last observation of the day and ignoring all intraday records. However, as a result of the increased automatization of nancial markets and the evolution of computational trading systems, intraday data bases that record every transaction along with their characteristics have been stablished. These data sets prompted the development of a new area of research ( nance with high frequency data), and in 1980 a literature based on the mechanisms of trading began (forms of trading, rules on securities trading, market structure, etc.), originating the Theory of Market Microstructure for the valuation of nancial assets, whose models advocate that timing transmits information. Then the literature proposed an extension to risk management by calculating the implied volatility, which is estimated by the realized volatility on an intraday level, and its applications for a ner value at risk (VaR).
publishDate 2016
dc.date.created.es_ES.fl_str_mv 2016
dc.date.accessioned.es_ES.fl_str_mv 2017-02-20T16:10:45Z
dc.date.available.es_ES.fl_str_mv 2017-02-20T16:10:45Z
dc.date.issued.fl_str_mv 2017-02-20
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/7890
url http://hdl.handle.net/20.500.12404/7890
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638931402522624
score 13.913218
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).