Duration models and value at risk using high-frequency data for the peruvian stock market

Descripción del Articulo

Most empirical studies in nance use data on a daily basis which is obtained by retaining the last observation of the day and ignoring all intraday records. However, as a result of the increased automatization of nancial markets and the evolution of computational trading systems, intraday data bases...

Descripción completa

Detalles Bibliográficos
Autores: Téllez De Vettori, Giannio, Najarro Chuchón, Ricardo
Formato: tesis de maestría
Fecha de Publicación:2016
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/156510
Enlace del recurso:http://hdl.handle.net/20.500.12404/7890
Nivel de acceso:acceso abierto
Materia:Bolsa de valores--Perú
Riesgo de mercado--Métodos estadísticos
Riesgo (Economía)--Modelos matemáticos
https://purl.org/pe-repo/ocde/ford#5.02.01
Descripción
Sumario:Most empirical studies in nance use data on a daily basis which is obtained by retaining the last observation of the day and ignoring all intraday records. However, as a result of the increased automatization of nancial markets and the evolution of computational trading systems, intraday data bases that record every transaction along with their characteristics have been stablished. These data sets prompted the development of a new area of research ( nance with high frequency data), and in 1980 a literature based on the mechanisms of trading began (forms of trading, rules on securities trading, market structure, etc.), originating the Theory of Market Microstructure for the valuation of nancial assets, whose models advocate that timing transmits information. Then the literature proposed an extension to risk management by calculating the implied volatility, which is estimated by the realized volatility on an intraday level, and its applications for a ner value at risk (VaR).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).