Modelamiento de la volatilidad de las bolsas de valores de América Latina: Probabilidades variables y reversión promedio en un modelo de cambios de nivel randomizado.
Descripción del Articulo
Siguiendo el trabajo de Xu y Perron (2014), en este documento se aplica el modelo extendido de cambios de nivel aleatorios (RLS) a los retornos diarios de los mercados bursátiles de Argentina, Brasil, Chile, Mexico y Perú. A diferencia del modelo RLS básico, en este modelo se usan probabilidades cam...
Autor: | |
---|---|
Formato: | documento de trabajo |
Fecha de Publicación: | 2015 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/52504 |
Enlace del recurso: | http://repositorio.pucp.edu.pe/index/handle/123456789/52504 |
Nivel de acceso: | acceso abierto |
Materia: | GARCH Larga Memoria Mercados Bursátiles de América Latina Modelo con Cambios de Nivel Aleatorios Predicción Probabilidades Variantes Reversión a la Media Volatilidad http://purl.org/pe-repo/ocde/ford#5.02.00 |
Sumario: | Siguiendo el trabajo de Xu y Perron (2014), en este documento se aplica el modelo extendido de cambios de nivel aleatorios (RLS) a los retornos diarios de los mercados bursátiles de Argentina, Brasil, Chile, Mexico y Perú. A diferencia del modelo RLS básico, en este modelo se usan probabilidades cambiantes asociadas a periodos de retornos extremadamente negativos y además se incorpora un mecanismo de reversión a la media el cual depende de los cambios de nivel pasados y de las desviaciones de la media de largo plazo. Así, se estiman cuatro modelos de cambios de nivel aleatorios: el modelos RLS básico, el modelo RLS con probabilidades variantes, el modelo RLS con reversión a la media y finalmente, el modelo RLS que combina los dos aspectos ya mencionados. Los resultados muestran que los coe cientes estimados son signi cativos, en especial cuando se usa el modelo RLS con reversión a la media. Asimismo, se realizan estimaciones de modelos ARFIMA y GARCH a las series de volatilidad a las cuales se le ha sustraído el componente de cambios de nivel. Los resultados, muestran que una vez que dichos componentes son tomados en cuenta, las características de larga memoria y efectos GARCH desaparecen. Finalmente, un análisis de predicción es proporcionado el cual confi rma que los modelos RLS son más e ficientes que otros modelos clásicos de larga memoria. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).