Problema de Cauchy para un Sistema de la Jerarquía AKNS

Descripción del Articulo

El objetivo en este trabajo es el estudio de ciertas propiedades de las soluciones reales de un problema de valor inicial de la forma   (aquí la forma)   en donde u = u (x, t) y v = v (x, t) son funciones con valores reales, (x, t) E R x [0,+ [, Pk (D) con k = 1, 2 son operadores pseudo-diferenciale...

Descripción completa

Detalles Bibliográficos
Autores: Mendoza Uribe, Aldo Alcides, Montealegre Scott, Juan
Formato: artículo
Fecha de Publicación:2011
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/96436
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/promathematica/article/view/2658/2604
Nivel de acceso:acceso abierto
Materia:Regularizaci on parab olica
Estimados de Bona-Smith
Ecuaci onde Ostrovsky
Efecto suavizante local
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:El objetivo en este trabajo es el estudio de ciertas propiedades de las soluciones reales de un problema de valor inicial de la forma   (aquí la forma)   en donde u = u (x, t) y v = v (x, t) son funciones con valores reales, (x, t) E R x [0,+ [, Pk (D) con k = 1, 2 son operadores pseudo-diferenciales y fj con j = 1, 2, 3 son funciones reales definidas sobre R2. Con mayor precisión, considerado el caso en el que los operadores Pk (D) con k = 1, 2 son definidos por Pk (D) u (ξ) = (-1)k+1 (ξ3 + 1/ ξ) u (ξ), f1 (u, v) = 3u2 - v2, f2 (u, v) = -2uv y f3 (u, v) = -u2 + 3v2, es demostrado que el problema de valor inicial que se obtiene es localmente bien formulado en los espacios de Sobolev Xs x Xs con s > 3/2, usando regularización parabólica para probar la existencia local y unicidad, y las llamadas aproximaciones de Bona-Smith para mostrar la dependencia continua de la solución respecto al dato inicial.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).