Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
Descripción del Articulo
The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random mi...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/186818 |
Enlace del recurso: | https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645 https://doi.org/10.18800/economia.202101.001 |
Nivel de acceso: | acceso abierto |
Materia: | Random missing data Two stage estimators Imputation Spatial lag model https://purl.org/pe-repo/ocde/ford#5.02.01 |
id |
RPUC_ce43d8873de70ffa3d41fe4e42380721 |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/186818 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Izaguirre, Alejandro2022-10-03T16:47:03Z2022-10-03T21:18:37Z2022-10-03T16:47:03Z2022-10-03T21:18:37Z2021-05-06https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645https://doi.org/10.18800/economia.202101.001The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information.application/pdfengPontificia Universidad Católica del PerúPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 44 Issue 87 (2021)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPRandom missing dataTwo stage estimatorsImputationSpatial lag modelhttps://purl.org/pe-repo/ocde/ford#5.02.01Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputationinfo:eu-repo/semantics/articleArtículo20.500.14657/186818oai:repositorio.pucp.edu.pe:20.500.14657/1868182025-03-21 15:33:13.85http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.en_US.fl_str_mv |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
spellingShingle |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation Izaguirre, Alejandro Random missing data Two stage estimators Imputation Spatial lag model https://purl.org/pe-repo/ocde/ford#5.02.01 |
title_short |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_full |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_fullStr |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_full_unstemmed |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_sort |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
author |
Izaguirre, Alejandro |
author_facet |
Izaguirre, Alejandro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Izaguirre, Alejandro |
dc.subject.en_US.fl_str_mv |
Random missing data Two stage estimators Imputation Spatial lag model |
topic |
Random missing data Two stage estimators Imputation Spatial lag model https://purl.org/pe-repo/ocde/ford#5.02.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.01 |
description |
The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-10-03T16:47:03Z 2022-10-03T21:18:37Z |
dc.date.available.none.fl_str_mv |
2022-10-03T16:47:03Z 2022-10-03T21:18:37Z |
dc.date.issued.fl_str_mv |
2021-05-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18800/economia.202101.001 |
url |
https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645 https://doi.org/10.18800/economia.202101.001 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2304-4306 urn:issn:0254-4415 |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.es_ES.fl_str_mv |
Economía; Volume 44 Issue 87 (2021) |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638481243602944 |
score |
13.7211075 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).