Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation

Descripción del Articulo

The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random mi...

Descripción completa

Detalles Bibliográficos
Autor: Izaguirre, Alejandro
Formato: artículo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/186818
Enlace del recurso:https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645
https://doi.org/10.18800/economia.202101.001
Nivel de acceso:acceso abierto
Materia:Random missing data
Two stage estimators
Imputation
Spatial lag model
https://purl.org/pe-repo/ocde/ford#5.02.01
id RPUC_ce43d8873de70ffa3d41fe4e42380721
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/186818
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Izaguirre, Alejandro2022-10-03T16:47:03Z2022-10-03T21:18:37Z2022-10-03T16:47:03Z2022-10-03T21:18:37Z2021-05-06https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645https://doi.org/10.18800/economia.202101.001The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information.application/pdfengPontificia Universidad Católica del PerúPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 44 Issue 87 (2021)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPRandom missing dataTwo stage estimatorsImputationSpatial lag modelhttps://purl.org/pe-repo/ocde/ford#5.02.01Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputationinfo:eu-repo/semantics/articleArtículo20.500.14657/186818oai:repositorio.pucp.edu.pe:20.500.14657/1868182025-03-21 15:33:13.85http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.en_US.fl_str_mv Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
spellingShingle Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
Izaguirre, Alejandro
Random missing data
Two stage estimators
Imputation
Spatial lag model
https://purl.org/pe-repo/ocde/ford#5.02.01
title_short Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_full Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_fullStr Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_full_unstemmed Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_sort Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
author Izaguirre, Alejandro
author_facet Izaguirre, Alejandro
author_role author
dc.contributor.author.fl_str_mv Izaguirre, Alejandro
dc.subject.en_US.fl_str_mv Random missing data
Two stage estimators
Imputation
Spatial lag model
topic Random missing data
Two stage estimators
Imputation
Spatial lag model
https://purl.org/pe-repo/ocde/ford#5.02.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.01
description The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2022-10-03T16:47:03Z
2022-10-03T21:18:37Z
dc.date.available.none.fl_str_mv 2022-10-03T16:47:03Z
2022-10-03T21:18:37Z
dc.date.issued.fl_str_mv 2021-05-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18800/economia.202101.001
url https://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645
https://doi.org/10.18800/economia.202101.001
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2304-4306
urn:issn:0254-4415
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Economía; Volume 44 Issue 87 (2021)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638481243602944
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).