Price and Spatial Distribution of Office Rental in Madrid: A Decision Tree Analysis

Descripción del Articulo

In this paper, we assess the drivers of office rental prices in the municipality of Madrid with a sample of 4,721 offices in March, 2020. The estimation was performed using the decision tree approach, which was built with a random forest algorithm. This technique allows us to capture the strong nonl...

Descripción completa

Detalles Bibliográficos
Autores: Camacho, Máximo, Ramallo, Salvador, Ruiz, Manuel
Formato: artículo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/23752
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/23752
Nivel de acceso:acceso abierto
Materia:Spatial economic
Random forest
Nonlinear
Offices
Descripción
Sumario:In this paper, we assess the drivers of office rental prices in the municipality of Madrid with a sample of 4,721 offices in March, 2020. The estimation was performed using the decision tree approach, which was built with a random forest algorithm. This technique allows us to capture the strong nonlinear component in the relation between price and its drivers, mainly geospatial location. Through a stratified analysis, we find out that the willingness to pay high rent in the center of Madrid is a feature of particular relevance to medium-sized offices. For diferent reasons, we also find out some office clusters located far from the city center with high rent for both large and small offices.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).