Imputation of missing data in photovoltaic panel monitoring system

Descripción del Articulo

In scientific research, data acquisition and processing play a fundamental role. In photovoltaic systems, given their nature, this process presents deficiencies due to various factors such as the dispersion of the installed modules, climatic conditions or the amount of information that must be obtai...

Descripción completa

Detalles Bibliográficos
Autor: Huaquipaco Encinas, Saul
Formato: tesis doctoral
Fecha de Publicación:2022
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:inglés
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/19224
Enlace del recurso:https://repositorio.unap.edu.pe/handle/20.500.14082/19224
Nivel de acceso:acceso abierto
Materia:Data imputation
Photovoltaic monitoring system
https://purl.org/pe-repo/ocde/ford#2.02.01
Descripción
Sumario:In scientific research, data acquisition and processing play a fundamental role. In photovoltaic systems, given their nature, this process presents deficiencies due to various factors such as the dispersion of the installed modules, climatic conditions or the amount of information that must be obtained, so the processes of data acquisition, storage and processing are very important. The present research developed a data acquisition, storage and processing system for photovoltaic systems, following the European standards IEC 60904 and IEC 61724 for data acquisition, Fog Computing for information storage and finally Machine Learning was used for processing. The results showed that the KNN-based model obtained a SCORE of 99.08%, MAE of 25.3 and MSE of 93.16. Concluding that the KNN-based model is the most robust model for data imputation in PV system monitoring.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).