Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks

Descripción del Articulo

In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted...

Descripción completa

Detalles Bibliográficos
Autor: Creamer, Germán G.
Formato: artículo
Fecha de Publicación:2009
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/194760
Enlace del recurso:https://repositorio.pucp.edu.pe/index/handle/123456789/194760
Nivel de acceso:acceso abierto
Materia:Data mining
Financial analysis
Logistic regression
Machine learning
Random forests
https://purl.org/pe-repo/ocde/ford#5.02.04
Descripción
Sumario:In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted on one sample each of Latin American depository receipts (ADRs) and Latin American banks. Random forests indicate that the most important variables that affect ADRs performance are size and the law-and-order tradition; the most important variables that affect banks are size, long-term assets to deposits, number of directors, and efficiency of the legal system. The interpretation of predictive models for a small sample improved when the capacity of random forests to rank and predict with the parameters of a logistic regression were combined.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).