Using Random Forests and Logistic Regression for Performance Prediction of Latin American ADRS and Banks
Descripción del Articulo
In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2009 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/194760 |
Enlace del recurso: | https://repositorio.pucp.edu.pe/index/handle/123456789/194760 |
Nivel de acceso: | acceso abierto |
Materia: | Data mining Financial analysis Logistic regression Machine learning Random forests https://purl.org/pe-repo/ocde/ford#5.02.04 |
Sumario: | In the paper, random forests and logistic regressions’ support of financial analysis functions’ predictive tool to forecast corporate performance and rank accounting and corporate variables according to their impact on performance is demonstrated. Ten-fold cross-validation experiments are conducted on one sample each of Latin American depository receipts (ADRs) and Latin American banks. Random forests indicate that the most important variables that affect ADRs performance are size and the law-and-order tradition; the most important variables that affect banks are size, long-term assets to deposits, number of directors, and efficiency of the legal system. The interpretation of predictive models for a small sample improved when the capacity of random forests to rank and predict with the parameters of a logistic regression were combined. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).